Skip to main content
Log in

Abrasive Wear Investigation and Parametric Process Optimization of in situ Al–4.5%Cu–xTiB2 Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Present investigation deals with pin-on-disk type of tribometer used to conduct abrasive wear testing of in situ Al–4.5%Cu–xTiB2 composites for enhanced understanding of the physical wear phenomenon. Characterization studies for comprehending ceramic TiB2 reinforcement distribution and wear surface topology analysis of Al–4.5%Cu–xTiB2 composites were executed through field emission scanning electron microscopy, X-ray diffraction, and high-resolution atomic force microscopy techniques. Experimental design based on full factorial method and Taguchi’s orthogonal array has been employed in the study to conduct wear experimental runs and study control parameters that are affecting the wearing phenomenon. Taguchi’s loss function method along with the assistance of MINITAB 17 software was used to optimize various control parameters involved in the experiment. ANOVA method was employed further to identify percentage contribution of various control parameter combinations affecting the output parameters. Furthermore, regression model was developed to assist in calculation of output response parameters based upon the existing wear experimental results. Consequently, this in-depth investigation on wear characteristics can immensely help in understanding the true influence of various parameters and their effects on the wear phenomenon of Al–4.5%Cu–xTiB2 composites.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sujith S V, Mahapatra M M, and Mulik R S Proc Inst Mech Eng Part J J Eng Tribol 234 (2020) 588. Doi:10.1177/1350650119883559

    Article  CAS  Google Scholar 

  2. Aherwar A, Patnaik A, and Pruncu C, J Mater Res Technol 9 (2020) 9882. https://doi.org/10.1016/j.jmrt.2020.07.003.

    Article  CAS  Google Scholar 

  3. Iyappan S K, and Ghosh A, Mater Manuf Process 30 (2015) 912. https://doi.org/10.1080/10426914.2014.984212.

    Article  CAS  Google Scholar 

  4. Shamim F A, Dvivedi A, and Kumar P, Mater Manuf Process 00 (2020) 1. https://doi.org/10.1080/10426914.2020.1802044.

    Article  CAS  Google Scholar 

  5. Sharma S, Nanda T, and Pandey O P, Ceram Int 44 (2018) 104. https://doi.org/10.1016/j.ceramint.2017.09.132.

    Article  CAS  Google Scholar 

  6. Gui M, Wang D, Wu J, and Li C, Mater Res Bull 36 (2001) 1573. https://doi.org/10.1016/s0025-5408(01)00485-8.

    Article  CAS  Google Scholar 

  7. Mozammil S, Karloopia J, Verma R, and Jha P K, J Alloys Compd 793 (2019) 454. https://doi.org/10.1016/j.jallcom.2019.04.137.

  8. Jayakumar E, Praveen A P, Rajan T P D, Pai B C, Trans Indian Inst Met 71 (2018) 2741. https://doi.org/10.1007/s12666-018-1442-5.

    Article  CAS  Google Scholar 

  9. Kumar A, Jha P K, and Mahapatra M M, J Mater Eng Perform 23 (2014) 743. https://doi.org/10.1007/s11665-013-0836-0.

  10. Singh J, and Chauhan A, Ceram Int 42 (2016) 56. https://doi.org/10.1016/j.ceramint.2015.08.150.

    Article  CAS  Google Scholar 

  11. Chak V, Chattopadhyay H, and Dora T L, J Manuf Process 56 (2020) 1059. https://doi.org/10.1016/j.jmapro.2020.05.042.

    Article  Google Scholar 

  12. Wäsche R, and Klaffke D, Tribol Int 32 (1999) 197. https://doi.org/10.1016/s0301-679x(99)00033-x.

    Article  Google Scholar 

  13. Kumar S, Chakraborty M, Subramanya Sarma V, Murty B S, Wear 265 (2008) 134. https://doi.org/10.1016/j.wear.2007.09.007.

    Article  CAS  Google Scholar 

  14. Arif S, Jamil B, Naim Shaikh M B, Aziz T, Ansari A H, and Khan M, Eng Sci Technol Int J 23 (2020) 674. https://doi.org/10.1016/j.jestch.2019.07.001.

    Article  Google Scholar 

  15. Meena K L, Vidyasagar C S, and Karunakar D B, Trans. Indian Inst. Met. 73 (2020) 1909. https://doi.org/10.1007/s12666-020-02001-y.

    Article  CAS  Google Scholar 

  16. Mandal A, Chakraborty M, and Murty B S, Wear 262 (2007) 160. https://doi.org/10.1016/j.wear.2006.04.003.

    Article  CAS  Google Scholar 

  17. Bembalge O B, and Panigrahi S K, Ceram Int 45 (2019) 20091. https://doi.org/10.1016/j.ceramint.2019.06.274.

    Article  CAS  Google Scholar 

  18. Sun J, Zhang X, Zhang Y, Ma N, and Wang H, Micron 70 (2015) 21. https://doi.org/10.1016/j.micron.2014.12.002.

    Article  CAS  Google Scholar 

  19. Shirvanimoghaddam K, Khayyam H, Abdizadeh H, Akbari M K, Pakseresht A H, Abdi F, Abbasi A, and Naebe M, Ceram Int 42 (2016) 6206. https://doi.org/10.1016/j.ceramint.2015.12.181.

    Article  CAS  Google Scholar 

  20. Mozammil S, Karloopia J, Verma R, and Jha P K, J Alloys Compd 826 (2020) 154184. https://doi.org/10.1016/j.jallcom.2020.154184.

  21. Mondal D P, Das S, Jha A K, and Yegneswaran A H, Wear 223 (1998) 131. https://doi.org/10.1016/s0043-1648(98)00278-6.

    Article  CAS  Google Scholar 

  22. Suresh S, and Moorthi N S V, in Procedia Engineering, 2012: p 89. https://doi.org/10.1016/j.proeng.2012.06.013.

  23. Ramakoteswara V, Ramanaiah N, and Mohiuddin Sarcar M M, J Mater Res Technol 5 (2016) 377. https://doi.org/10.1016/j.jmrt.2016.03.011.

    Article  CAS  Google Scholar 

  24. Han Y, Liu X, and Bian X, Compos Part A Appl Sci Manuf 33 (2002) 439.

  25. Mozammil S, Verma R, Karloopia J, and Jha P K, J Mater Res Technol 9 (2020) 8041. https://doi.org/10.1016/j.jmrt.2020.05.045.

  26. Karloopia J, Mozammil S, and Jha P K, JOM 72 (2020) 2927.

    Article  CAS  Google Scholar 

  27. Verma R, Nath S K, and Jayaganthan R, J Matlet 285 (2021) 129111. https://doi.org/10.1016/j.matlet.2020.129111.

    Article  CAS  Google Scholar 

  28. Verma R, Jayaganthan R, Nath S K, Srinivasan A, J Matchar 160 (2019) 110048. https://doi.org/10.1016/j.matchar.2019.110048.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to extend their heartfelt appreciations and a deep sense of gratitude to the Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, for providing the required facilities throughout the investigation and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik Mozammil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozammil, S., Koshta, E. & Jha, P.K. Abrasive Wear Investigation and Parametric Process Optimization of in situ Al–4.5%Cu–xTiB2 Composites. Trans Indian Inst Met 74, 629–648 (2021). https://doi.org/10.1007/s12666-020-02180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02180-8

Keywords

Navigation