Skip to main content

Advertisement

Log in

Evaluation of Thermoelectric Properties of Doped β-Iron Disilicide Prepared by the Powder Metallurgy Technique

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Thermoelectric generator (TEG) offers a potential application in harvesting waste-heat energy into usable electrical power. β-iron disilicide (β-FeSi2) thermoelectric is applicable in elevated temperature systems such as hydrogen plants, copper reverberatory furnace and copper refining furnace. In this work, high TE performance Mn doped p-type and Co doped n-type thermoelectric (TE) β-iron disilicide compacts were fabricated for TEG using powder metallurgy route. The effects of variation in type and quantity of dopants [p-type dopant: Mn: stoichiometry Fe1−xMnxSi2 (x = 0.04 − 0.12) or n-type dopant: Co: stoichiometry Fe1−yCoySi2 (y = 0.01 − 0.05)] on thermoelectric properties were studied. Significant improvement in ZT was observed compared to earlier research works for this material system. This result is a positive indication for the potential use of β-FeSi2 in the high temperature TEG. In this work, the working efficiency was also evaluated which was not mentioned in the earlier research works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jaziri N, Boughamoura A, Müller J, Tounsi F, and Ismail M, Energy Rep (2019).

    Google Scholar 

  2. Ur S C and Kim I H, Met Mater Int 11 (2005) 303.

  3. da Rosa A V, Fundamentals of Renewable Energy Resources, 3rd edn, Academic Press, Stanford University, Stanford, Cambridge (2013), pp. 171–172.

    Google Scholar 

  4. Poddar V, Dhokey N, Garbade R, Butee S, Prakash D, and Purohit R, Mater Sci Semicond Process 71 (2017) 478.

  5. Cai K F, Mueller E, Drasar C, and Stiewe C, Solid State Commun 131 (2004) 328.

    Article  Google Scholar 

  6. Qu X, Wang W, Liu W, Yang Z, Duan X, and Jia D, Mater Chem Phys 129 (2011) 335.

    Google Scholar 

  7. Chen H Y, Zhao X B, Stiewe C, Platzek D, and Mueller E, J Alloys Compd 433 (2007) 344.

    Google Scholar 

  8. Gross E, Riffel M, and Stoehrer U, J Mater Res 10 (1995) 36.

    Google Scholar 

  9. Nogi K and Kita T, J Mater Sci 35 (2000) 5849.

    Article  Google Scholar 

  10. Poddar V and Dhokey N, Trans Indian Inst Met 72 (2019) 2711.

    Article  CAS  Google Scholar 

  11. Hasan R and Ur S C, J Elec Mater 49 (2020) 2719.

    Article  Google Scholar 

  12. Kiatgamolchai S, Parinyataramas J, Nilpairach S, Thueploy A, Wanichsampan J, and Min G, Acta Metall Slov 12 (2006) 121.

    Google Scholar 

  13. Kim S W, Cho M K, Mishima Y, and Choi D C, Intermetallics 11 (2003) 399.

    Article  CAS  Google Scholar 

  14. Desimoni J, Cotes S M, Taylor M A, Martinez J, and Runco J, Intermetallics 15 (2007) 1302.

    Article  Google Scholar 

  15. Chai J, Chen M, Du X, Qiu P, Sun Y, and Chen L, Phys Chem Chem Phys (2019).

  16. Clark S J, Al-Allak H M, Brand S, and Abram R A, Phys Rev B 58 (1998) 389.

    Article  Google Scholar 

  17. Zhang L, Du Y, Xu H, and Pan Z, Calphad 30 (2006) 480.

    Google Scholar 

  18. Ohtaki M, Oxide Thin Films, Multilayers, and Nanocomposites, 1st edn, Springer, Berlin (2015) pp. 109–122.

    Google Scholar 

  19. Lee Y-G, Choia M-K, Kim I-H, and Ur S-C, J Ceram Process Res 13 (2012) 818.

    Google Scholar 

  20. Chen H Y, Zhao X B, Lu Y F, Mueller E, and Mrotzek A, J Appl Phys 94 (2003) 6625.

    Google Scholar 

  21. Kim H-S, Gibbs Z M, Tang Y, Wang H, and Snyder G J, APL Mater 3 (2015) 041506-2.

  22. Ioffe A and Stil’bans L S, Rep Prog Phys 22 (1957) 184.

  23. Vining C B, in CRC Handbook of Thermoelectrics, (ed) Rowe D M, CRC Press, Boca Raton (1995), p. 277.

  24. Fedorov M, J Thermoelectr 2 (2009) 52.

    Google Scholar 

Download references

Acknowledgements

The authors are very much grateful to SPPU, Pune for providing XRD analysis facility and to IISER, Pune, and BRNS, Mumbai, for providing thermoelectric evaluation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Poddar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poddar, V.S., Dhokey, N.B. Evaluation of Thermoelectric Properties of Doped β-Iron Disilicide Prepared by the Powder Metallurgy Technique. Trans Indian Inst Met 74, 399–410 (2021). https://doi.org/10.1007/s12666-020-02167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02167-5

Keywords

Navigation