Skip to main content
Log in

Microwave and Conventional Preparation of P2O5–ZnO–Al2O3–Na2O Glass/Eu3+ Ion as Luminescent Probe

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Glass comprising of P2O5–Al2O3–Na2O–ZnO is melted in microwave (MW) heating as an alternate energy efficient heating method. Properties of glasses obtained from MW heating are compared with that of glasses prepared adopting resistive heating. Glass transition temperature (Tg) in MW melted glass is found ~ 15–20 °C lower compared to the glass prepared in resistance furnace. XPS O1s spectra indicate less non-bridging oxygen (NBO) formation in glass obtained from MW melting. This may be due to less evaporation as well as less leaching of alumina from crucible wall during melting. Photoluminescence spectra of Eu3+-doped glass indicate higher asymmetric ratio in the conventional glass. MW melting requires 2 h 20 min, whereas it is ~ 6 h in resistive heating. Comparison of power consumption analysis depicts maximum MW forward power < 1.5 kW with ~ 1 kW average power during melting of glass. Maximum power in resistive heating furnace is recorded 4 kW for identical melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clark D E, Sutton W H, Microwave processing of materials, Annu. Rev. Mater. Sci. 26 (1996) 299.

    Article  CAS  Google Scholar 

  2. Rao K J, Vaidhyanathan B, Ganguli M, and Ramakrishnan P A, Chem. Mater., 11 (1999) 882.

    Article  CAS  Google Scholar 

  3. Bhattacharya M, and Basak T, Energy. 97 (2016) 306.

    Article  Google Scholar 

  4. Agrawal D, Trans. Indian Ceram. Soc. 65 (2006) 129.

    Article  CAS  Google Scholar 

  5. Fujii T., Kashimura K, and Tanaka H, Hazard. Mater. 369 (2019) 318.

    Article  CAS  Google Scholar 

  6. Dube C L, Kashyap S C, Dube D C, and Agrawal D K, J. Alloys Compd. 571 (2013) 75.

    Article  CAS  Google Scholar 

  7. Reinosa J J, García-Baños B, Catalá-Civera J M, López-Buendía Á M, Guaita L, and Fernández J F, Int. J. Appl. Glass Sci. 10 (2019) 208.

    CAS  Google Scholar 

  8. Singhal C, Murtaza Q, Alam P, and Hasan F, Adv. Mater. Process. Technol. 5 (2019) 559.

    Article  Google Scholar 

  9. Davis III C, Pertuit A L, and Nino J C, J Am. Ceram. Soc. 100 (2017) 765.

    Article  Google Scholar 

  10. Ahmad S, Mahmoud M M, and Hans Jürgen Seifert H, J. Alloys Compd. 797 (2019) 45.

  11. Mahmoud M M, Folz D C, Suchicital C T A, and Clark D E, J. Am. Ceram. Soc. 95 (2012) 579.

    Article  CAS  Google Scholar 

  12. Venkateswaran C, Sharma S C, Chauhan V S, and Vaish R, J. Am. Ceram. Soc. 101(1) (2018) 140.

    Article  CAS  Google Scholar 

  13. García-Baños B, Reinosa J J, Peñaranda-Foix F L, Fernández J F, and Catalá-Civera J M, Sci. Rep. 9 (2009) 10809.

    Article  Google Scholar 

  14. Siligardi C, D’Arrigo M C, Leonelli C, Pellacani G C, and Cross T E, J. Am. Chem. Soc. 83 (2000) 1001.

    CAS  Google Scholar 

  15. Chenu S, Rocherullè J, Lebullenger R, Merdrignac O, Chevire F, Tessier F, and Oudadesse H, J. Non-Cryst. Solids 356 (2010) 87.

    Article  CAS  Google Scholar 

  16. Ghussn L and Martinelli J L, J. Mater. Sci. 39 (2004) 1371.

    Article  CAS  Google Scholar 

  17. Wang J S, Jeng J S and Ni C T, J. Non. Cryst. Solids. 355 (2009) 780.

    Article  CAS  Google Scholar 

  18. Almeida F J M, Martinelli J R, and Partiti C S M, J. Non. Cryst. Solids. 353 (2007) 4783.

    Article  CAS  Google Scholar 

  19. Murase I, Imaeda K, Sakurai M and Watanabe M, Phosphorus Res. Bull. 19 (2005) 65.

    Article  CAS  Google Scholar 

  20. Chenu S, Rocherullé J, Lebullenger R,. Merdrignac O, Cheviré F, Tessier F, and Oudadesse H, J. Non. Cryst. Solids. 356 (2010) 87.

    Article  CAS  Google Scholar 

  21. Mandal A K, and Sen R, Mater. Manuf. Processes. 32 (2017) 1.

    Article  CAS  Google Scholar 

  22. Mandal A K, Sen S, Mandal S, Guha C and Sen R, Int. J. Green Energy. 12 (2015) 1280.

    Article  CAS  Google Scholar 

  23. Mandal A K, Sinha P K, Das D, Guha C, and Sen R, Mater. Res. Bull. 63 (2015) 141.

    Article  CAS  Google Scholar 

  24. Mandal A K, Mandal B, Illath K, Ajithkumar T G, Halder A, Sinha P K, and Sen R, Sci. Rep. 8 (2018) 1.

    Google Scholar 

  25. Mandal A K, and Sen R, Int. J. Appl. Glass Sci. 10 (2019) 83.

    Article  CAS  Google Scholar 

  26. Mandal A K, Balaji S, and Sen R, J. Alloys Compd. 615 (2014) 283.

    Article  CAS  Google Scholar 

  27. Reddy B N K, Raju B D, Thyagarajan K, Ramanaiah R, Jho Y D and Reddy B S, Ceram. Int. 43 (2017) 8886.

    Article  CAS  Google Scholar 

  28. Viswanath C S D, Krishnaiah K V, and Jayasankar C K, Opt. Mater. 83 (2018) 348.

    Article  Google Scholar 

  29. Shirbeeny W E, Aly M H, El-samahy A E and Emad K M, Indian J Pure Appl. Phy. 3 (2007) 122.

    Google Scholar 

  30. Mandal A K, Agrawal D, and Sen R, J. Non-Cryst. Solids 371–372 (2013) 41.

    Article  Google Scholar 

  31. Basak A, Ramrakhiani L, Ghosh S, Mandal A K, and Sen R, J. Non-Cryst. Solids 500 (2018) 11.

    Article  CAS  Google Scholar 

  32. Elisa M, Grigorescu C E A, Vasiliu C, Bulinski M, Kuncser V, Predoi D, Filoti G, Meghea A, Lftimie N, and Giurgincal M, Rev. Adv. Mater. Sci. 10 (2005) 367.

    CAS  Google Scholar 

  33. Mandal A K, and Sen R, Mater. Res. Bull. 108 (2018) 156.

    Article  CAS  Google Scholar 

  34. Pei Z, Su Q, and Li S, J. Lumin. 50 (1991) 123.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Director of CSIR-Central Glass and Ceramic Research Institute, for his kind encouragement and support to pursue this work. This work is supported by CSIR, FBR Project (MLP 0106/OLP0599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandal Ashis Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A.K. Microwave and Conventional Preparation of P2O5–ZnO–Al2O3–Na2O Glass/Eu3+ Ion as Luminescent Probe. Trans Indian Inst Met 74, 827–837 (2021). https://doi.org/10.1007/s12666-020-02163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02163-9

Keywords

Navigation