Skip to main content
Log in

Novel Image Analysis-Based Method for Residence Time Distribution Analysis in Steelmaking Tundish

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A digital image processing-based technique has been developed for residence time distribution (RTD) analysis in a steelmaking tundish. This work presents an alternative approach to current RTD analysis techniques like tracer dispersion analysis, particle image velocimetry, numerical analysis, etc. The video analysis method has been developed, and different process conditions have been evaluated. The physical model of a steelmaking tundish having water as a working fluid similar to the one which is used for RTD analysis through other methods has been used. New incoming fluid (water) has been identified using colored water so that all properties apart from color remain the same. The proposed method breaks the video into static frames, and through application of Lucas–Kanade method, the moving colored pixels in the region of interest are identified. Further intensity analysis of the moving colored pixels is done. In the present novel method, RTD curve is obtained by plotting the intensity of blue component at the outlet vs time. The obtained RTD from VT-LK method has been validated against conventional and established RTD technique widely used for RTD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chattopadhyay K, Isac M, and Guthrie R I L, ISIJ Int, 50 (2010) 331.

    Article  CAS  Google Scholar 

  2. Mazumdar D, and Guthrie R I L, ISIJ Int, 39 (1999) 524.

    Article  CAS  Google Scholar 

  3. Li Hong-X, Wang Q, Lei H, Jiang Jia-W, Guo Zhan-C, and He Ji-C, ISIJ Int, 54 (2014) 1592.

  4. Mazumdar D, Singh O P, Dutta J, Ghosh S, Satish D, and Chakraborty S, Trans Indian Inst Met 64 (2011) 593.

    Article  CAS  Google Scholar 

  5. Chattopadhyay K, Hasan M, Isac M, Guthrie R I L, Metall Mat Trans B, 41 (2010) 225.

  6. Chatterjee S, Li D, and Chattopadhyay K, Metall Mat Trans B, 49 (2018) 756.

    Article  CAS  Google Scholar 

  7. Kumar A, Mazumdar D, and Koria S C, ISIJ Int, 48 (2008) 38.

    Article  CAS  Google Scholar 

  8. Kumar A, Mazumdar D, and Koria S C, Metall Mat Trans B, 36 (2005) 777.

  9. Robert A, and Mazumdar D, Steel Res Int, 72 (2016) 97.

    Article  Google Scholar 

  10. Sahai Y, and Emi T, ISIJ Int, 36 (1996) 667.

    Article  CAS  Google Scholar 

  11. Cwudzinski A, Steel Res Int 85 (2013) 902.

    Article  Google Scholar 

  12. Lopez-Ramirez S, Barreto J, de J Palafox-Ramos J, Morales R D, and Zacharias D, Metall Mat Trans B, 32 (2001) 615.

  13. Morales R D, Lopez-Ramirez S, Palafox-Ramos J, and Zacharias D, ISIJ Int, 39 (1999) 455.

    Article  CAS  Google Scholar 

  14. Morales R D, Barreto J, de J Lopez-Ramirez S, Palafox-Ramos J, and Zacharias D, Metall Mat Trans B, 31 (2000) 1505.

  15. Ramos-Banderas A, Morales R D, García-Demedices L, and Díaz-Cruz M, ISIJ Int 43 (2003) 653.

  16. Rückert A, Warzecha M, Koitzsch R, Pawlik M, and Pfeifer H, Steel Res Int, 80 (2009) 568.

    Google Scholar 

  17. Huang J, Yuan Z, Shi S, Wang B, and Liu C, Metals, 9 (2019) 239.

    Article  CAS  Google Scholar 

  18. Kumar A, Ganjyal G M, Jones D D, and Hanna M A, J Food Eng, 75 (2006) 237.

    Article  Google Scholar 

  19. Lee S Y, Hanna M A, and Jones D D, Starch, 61 (2009) 146.

    Article  CAS  Google Scholar 

  20. Behin J, and Farhadin N, Exp Therm Fluid Sci, 51 (2013) 244.

    Article  CAS  Google Scholar 

  21. Behin J, and Farhadin N, Chem Eng Tech, 38 (2015) 2207.

    Article  CAS  Google Scholar 

  22. Koiranen T, Melanen T, Ilonen J Eerola T, Lensu L, and Kälviäinen H, Chem Eng Commun, 204 (2017) 982.

    Article  CAS  Google Scholar 

  23. Sahai Y, and Burval M D, Electr Furn Conf Proc, 50 (1992) 469.

    CAS  Google Scholar 

  24. Singh S, and Koria S C, ISIJ Int, 33 (1993) 1228.

    Article  CAS  Google Scholar 

  25. Liu T, and Shen L, J Fluid Mech, 614 (2008) 253.

    Article  Google Scholar 

  26. Mi Y, Bipin P K, and Shah R K, Commun Comput Inf Sci Inf Commun Comput Technol, 835 (2019) 118.

  27. Ali S, Daul C, Galbrun E, and Blondel W, Comput Vis Image Understand, 145 (2016) 95.

    Article  Google Scholar 

  28. Sengar S S, and Mukhopadhyay S, Optik, 127 (2016) 6258.

    Article  Google Scholar 

  29. Doshi A, and Bors A G, IEEE Trans Image Process, 19 (2010) 2332.

    Article  Google Scholar 

  30. Wildes R P, Amabile M J, Lanzillotto A M, Leu T S, Comput Vis Image Understand, 80 (2000) 246.

    Article  Google Scholar 

  31. Patel D, and Upadhyay S, Int J Comput Appl, 61 (2013) 6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the management of BIT MESRA and RDCIS, SAIL for their constant support, encouragement, and permission to publish this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antariksh Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, A., Gupta, A. & Singh, R.K. Novel Image Analysis-Based Method for Residence Time Distribution Analysis in Steelmaking Tundish. Trans Indian Inst Met 74, 243–254 (2021). https://doi.org/10.1007/s12666-020-02142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02142-0

Keywords

Navigation