Skip to main content
Log in

Role of Precipitation on the Hydrogen Embrittlement Behavior of IN 718

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The role of aging conditions vis-à-vis the precipitate state on the hydrogen embrittlement behavior of IN 718 has been studied. Slow strain rate tests showed that the overaged condition was most susceptible to hydrogen embrittlement followed by the peak-aged and solution-annealed conditions. Hydrogen permeation studies carried out using Devanathan–Stachurski cell showed that the hydrogen diffusivity values varied in the order: overaged condition < solution-annealed < peak-aged conditions. The hydrogen trapping due to increased δ precipitates was found to be responsible for increase in the degree of susceptibility towards hydrogen embrittlement between the aging conditions. These precipitates when aligned along the grain boundaries for peak-aged condition promoted hydrogen diffusion, whereas their alignment across the grain boundaries in case of overaged condition hindered the grain boundary diffusion process. The path for hydrogen migration became tortuous which retarded hydrogen migration in the alloy and hence the hydrogen embrittlement susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bhavsar R B, Collins A, and Silverman S, Proc. Int. Symp. Superalloys Var. Deriv. 1 (2001) 47.

    Google Scholar 

  2. Demetriou V, Robson J D, Preuss M, and Morana R, Int. J. Hydrogen Energy 42 (2017) 23856.

    Article  CAS  Google Scholar 

  3. Akca E, and Gürsel A, Period. Eng. Nat. Sci. 3 (2015) 15.

    Google Scholar 

  4. Azadian S, Wei L Y, and Warren R, Mater. Charact. 53 (2004) 7.

    Article  CAS  Google Scholar 

  5. Sarmiento Klapper H, Klower J, and Gosheva O, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375 (2017) 20160415.

  6. Herlach D, Kottler C, Wider T, and Maier K, Phys. B Condens. Matter 289–290 (2000) 443.

    Article  Google Scholar 

  7. Zhang Z, Obasis G, Morana R, and Preuss M, Acta Mater. 113 (2016) 272.

    Article  CAS  Google Scholar 

  8. Dadfarnia M, Nagao A, Wang S, Martin M L, Somerday B P, and Sofronis P, Int J Fract 196 (2015) 223.

    Article  CAS  Google Scholar 

  9. Demetriou V, Robson J D, Preuss M, and Morana R, Mater. Sci. Eng. A 684 (2017) 423.

    Article  CAS  Google Scholar 

  10. Galliano F, Andrieu E, Blanc C, Cloue J M, Connetable D, and Odemer G, Mater. Sci. Eng. A 611 (2014) 370.

    Article  CAS  Google Scholar 

  11. Andreau E, and Henon J P, Mater. Sci. Eng. 88 (1987) 191.

    Article  Google Scholar 

  12. Rosa T S A, Ribeiro A F, de Almeida L H, and dos Santos D S, Defect Diffus. Forum 297–301 (2010) 733.

    Article  Google Scholar 

  13. Wang C, and Li R, J. Mater. Sci. 39 (2004) 2593.

    Article  CAS  Google Scholar 

  14. ASTM Standard, G148-97 (2018) 1.

  15. Jebaraj, Josiah J M, David J. Morrison, and Ian I. Suni, Corrosion Science 80 (2014) 517.

  16. Robertson W M, Metall. Trans. A 8 (1977) 1709.

    Article  Google Scholar 

  17. Xu J, Sun X K, Liu Q Q, and Chen W X, Metallurgical and Materials Transactions A 25 (1994) 539.

    Article  Google Scholar 

  18. Turnbull A, Ballinger R G, Hwang I S, Morra M M, Psaila-Dombrowski M, and Gates R M, Metallurgical Transactions A 23 (1992) 3231.

    Article  Google Scholar 

  19. Tarzimoghadam Z, Rohwerder M, Merzlikin S V, Bashir A, Yedra L, Eswara S, Ponge D, and Raabe D, Acta Mater. 109 (2016) 69.

    Article  CAS  Google Scholar 

  20. Rezende M C, Araujo L S, Gabriel S B, Dos Santos D S, and De Almeida L H, Int. J. Hydrogen Energy 40 (2015) 17075.

    Article  CAS  Google Scholar 

  21. Tarzimoghadam Z, Ponge D, Klöwer J, and Raabe D, Acta Mater. 128 (2017) 365.

    Article  CAS  Google Scholar 

  22. ASTM Standard, E8/E8M (2016) 1.

  23. Patil R V, and Kale G B, Journal of nuclear materials 230 (1996) 57.

    Article  CAS  Google Scholar 

  24. LaCoursiere M P, Aidun D K, and Morrison D J, J. Mater. Eng. Perform. 26 (2017) 1.

    Article  Google Scholar 

Download references

Acknowledgments

Facilities of Metallurgical Engineering and Materials Science Department and Sophisticated Analytical Instrument Facility (SAIF) at Indian Institute of Technology Bombay were employed for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, B., Ajay Krishnan, M. & Raja, V.S. Role of Precipitation on the Hydrogen Embrittlement Behavior of IN 718. Trans Indian Inst Met 74, 223–233 (2021). https://doi.org/10.1007/s12666-020-02136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02136-y

Keywords

Navigation