Electrochemical Characteristics of Various Ni–P Composite Coatings in 0.6 M NaCl Solution

Abstract

In this paper, various Ni–P composite coatings containing toner, MoS2, and nano-SiO2 particles were deposited on steel substrates by the electroless method. Then, the electrochemical properties of these coatings after a heat treatment process were compared. The microstructural evaluations were also done by using the optical and electron microscopy methods. Both Tafel polarization and electrochemical impedance spectroscopy techniques were utilized to survey the electrochemical behavior of such coatings. The surface morphology of all coatings contained cauliflower-like nodules. The X-ray diffraction patterns showed the crystalline phases of Ni and Ni3P for all coatings after the heat-treatment step. Obtained results showed that all composite coatings exhibited lower corrosion rates with respect to Ni–P coatings. Such a reduction was about 21.6–92.2%. This behavior was attributed to the presence of reinforcement as barriers for corrosive ion diffusion through the coating plus the changes in detected phases and thickness. Electrochemical impedance spectroscopy test results also demonstrated that the increase in the polarization resistance for composites coatings was about 18.4–85.3% after 1 h immersion in a 0.6 M NaCl solution; however, when the immersion time increased to 24 h, such increased resistance changed to 18.1–73.1%. Totally, despite the lower deposition rate, the presence of MoS2 and nano-SiO2 particles were more effective than toner particles to raise the corrosion rate of the Ni–P coating.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Zhou Q, Liu S, Zhang Y, Zhu Z, Su W, and Sheng M, Ceram. Int. 4 (2019) 1879.

    Google Scholar 

  2. 2.

    Thakur I S, Pandey V S, Rao P S, Tyagi S, and Goyal D, Tribological study of mechanically milled graphite nanoparticles codeposited in electroless Ni–P coatings. Metal Powder Report (2020).

  3. 3.

    Czagany M, and Baumli P, Surf. Coat. Technol. 361 (2019) 42.

    CAS  Article  Google Scholar 

  4. 4.

    Agredo Diaz D G, Barba Pingarron A, Olaya Florez J J, Rafael J, Parra G, Cervantes Cabello J, Angarita Moncaleano I, Covelo Villar A, and Hernandez Gallegos M A, Mater. Lett. 275 (2020) 128159.

  5. 5.

    Rana A R K, and Farhat Z, Surf. Coat. Technol. 369 (2019) 334.

    CAS  Article  Google Scholar 

  6. 6.

    Cui C, Du H, Liu H, and Xiong T, Corros. Sci. 162 (2020) 108202.

    CAS  Article  Google Scholar 

  7. 7.

    Eranegh F A, Azadi M, and Tavakoli H, Surf. Eng. Appl. Electrochemi. 56 (2020) 171.

    Article  Google Scholar 

  8. 8.

    Safavi M S, and Rasooli A, Surf. Coat. Technol. 372 (2019) 252.

    CAS  Article  Google Scholar 

  9. 9.

    Chen B, Guo J, Yan M F, Wang F, and Liu F, Appl. Surf. Sci. 504 (2020) 144116.

    CAS  Article  Google Scholar 

  10. 10.

    Ram Dhakal D, Gyawali G, Kshetri Y K, Choi J H, and Lee S W, Surf. Coat. Technol. (2020).

  11. 11.

    Shashikala A R, and Sridhar B S, Mater. Today Proc. (2020).

  12. 12.

    Du Y, Zhang X, Wei L, Yu B, Wang Y, Wang Y, and Ye S, Mater. Chem. Phys. 241 (2020) 122448.

  13. 13.

    Sharma A, Singh A K, Centr. Eur. J. Eng. 4 (2014) 80.

    CAS  Google Scholar 

  14. 14.

    Wu Y, Liu L, Shen B, and Hu W, J. Mater. Sci. 40 (2005) 5056.

    Google Scholar 

  15. 15.

    Ping L, Yongwei Z, Gaoyan Z, Xiao Z, Shuncai W, and Shoufeng Y, Coatings 9 (2019) 116.

    Article  Google Scholar 

  16. 16.

    Mayanglambam F, and Russell M, Int. J. Miner. Metall. Mater. 27 (2020) 1147.

    CAS  Article  Google Scholar 

  17. 17.

    Nezhadi P, Azadi M, and Shojaie Bahaabad M, Surf. Interfaces 18 (2020) 100450.

  18. 18.

    Azadi M, Olya M J, and Bahrololoom M E, Progr. Color Color. Coat. 9 (2016) 53.

    CAS  Google Scholar 

  19. 19.

    Azadi M, Ferdosi Heragh M, and Bidi M A, Progr. Color Color. Coat. 13 (2020) 213.

  20. 20.

    Ahangaran F, Hassanzadeh A, and Nouri S, Int. Nano Lett. 3 (2013) 23.

    Article  Google Scholar 

  21. 21.

    Bidi M A, Azadi M, and Rassouli M, Mater. Today Commun. 24 (2020) 100996.

    CAS  Article  Google Scholar 

  22. 22.

    Verma N, Kumar R, and Sharma V, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 196 (2018) 40.

    CAS  Article  Google Scholar 

  23. 23.

    Yan L, Rong Y S, Dan L J, Wu H Z, and Sheng Y D, Trans. Nonferrous Met. Soc. China 21 (2011) 483.

    Article  Google Scholar 

  24. 24.

    Stankiewicz A, Kefallinou Z, Mordarski G, Jagoda Z, and Spencer B, Electrochim. Acta 297 (2019) 427.

    CAS  Article  Google Scholar 

  25. 25.

    Sharifalhoseini Z, Entezari M H, Davoodi A, and Shahidi M, Corros. Sci. 172 (2020) 108743.

    CAS  Article  Google Scholar 

  26. 26.

    Lin J D, and Chou C T, Surf. Coat. Technol. 368 (2019) 126.

    CAS  Article  Google Scholar 

  27. 27.

    Mollaei M, Azadi M, and Tavakoli H, Appl. Phys. A 124 (2018) 504.

    Article  Google Scholar 

  28. 28.

    Naderi J, and Sarhan A A D, Measurement 139 (2019) 490.

    Article  Google Scholar 

  29. 29.

    Toloei A, Stoilov V, and Northwood D, ASME 2013 International Mechanical Engineering Congress and Exposition vol. 2B, Advanced Manufacturing, 2013.

  30. 30.

    Marzo F F, Alberro M, Manso A P, Garikano X, Alegre C, Montiel M, Lozano A, and Barreras F, Int. J. Hydrog. Energy 45 (2020) 20632.

    CAS  Article  Google Scholar 

  31. 31.

    Arab M, Azadi M, and Mirzaee O, Mater. Chem. Phys. 253 (2020) 123259.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahboobeh Azadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azadi, M., Tavakoli, H., Haghighatkhah, S. et al. Electrochemical Characteristics of Various Ni–P Composite Coatings in 0.6 M NaCl Solution. Trans Indian Inst Met 74, 137–147 (2021). https://doi.org/10.1007/s12666-020-02125-1

Download citation

Keywords

  • Ni–P–MoS2–SiO2 nano-composite coatings
  • Ni–P–MoS2 composite coatings
  • Ni–P–Toner composite coatings
  • Electrochemical properties
  • Electroless