Skip to main content

Synthesis, Characterization and Thermal Stability of Nanocrystalline MgAlMnFeCu Low-Density High-Entropy Alloy

Abstract

An equiatomic quinary MgAlMnFeCu high-entropy alloy (HEA) has been synthesized successfully by mechanical alloying (MA). Phase evolution of MgAlMnFeCu HEA has been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS/XEDS). Milling up to 60 h leads to the formation of a mixture of two phases consisting of a BCC phase (a = 2.87 ± 0.02 Å) and ϒ-brass-type phase (a = 8.92 ± 0.03 Å), with ~ 2 μm powder particle size. The as-milled alloy after spark plasma sintering (SPS) at 900 °C exhibits an experimental density of 4.946 ± 0.13 g cc−1, which is 99.80% of the theoretical density. SPS leads to the formation of C15 Laves phase (MgCu2-type; a = 7.034 ± 0.02 Å) and B2 (AlFe-type; (a = 2.89 ± 0.02 Å) intermetallic along with the ϒ-brass-type phase. The SPSed sample has exceptional hardness value (~ 5.06 GPa), high compressive strength (~ 1612 MPa) and appreciable failure strain (~ 6.4%) coupled with relatively low density. Various thermodynamic parameters have been considered for understanding the phase evolution and their stability during MA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Cantor B, Chang I T H, Knight P, Vincent A J B, Mater Sci Eng A 375–377 (2004) 213 https://doi.org/10.1016/j.msea.2003.10.257.

    CAS  Article  Google Scholar 

  2. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y, Adv. Eng. Mater. 6 (2004) 299 https://doi.org/10.1002/adem.200300567.

    CAS  Article  Google Scholar 

  3. Senkov O N, Miracle D B, Chaput K J, and Couzinie J P, J Mater Res 33 (2018) 3092 https://doi.org/10.1557/jmr.2018.153.

    CAS  Article  Google Scholar 

  4. Gorsse S, Miracle D B, and Senkov O N, Acta Mater. 135 (2017) 177 https://doi.org/10.1016/j.actamat.2017.06.027.

    CAS  Article  Google Scholar 

  5. Miracle D B, and Senkov O N, Acta Mater. 122 (2017) 448 https://doi.org/10.1016/j.actamat.2016.08.081.

    CAS  Article  Google Scholar 

  6. Gao M C, JOM. 67 (2015) 2251 https://doi.org/10.1007/s11837-015-1609-z.

    Article  Google Scholar 

  7. Zhang Y, Zuo T T, Tang Z, Gao MC, Dahmen K A, Liaw P K, Lu Z P, Prog Mater Sci 61 (2014) 1 https://doi.org/10.1016/j.pmatsci.2013.10.001.

    CAS  Article  Google Scholar 

  8. Yadav T P, Mukhopadhyay S, Mishra S S, Mukhopadhyay N K, Srivastava O N, Philos Mag Lett 97 (2017) 494 https://doi.org/10.1080/09500839.2017.1418539.

    CAS  Article  Google Scholar 

  9. Shivam V, Basu J, Shadangi Y, Singh M K, Mukhopadhyay N K, J Alloys Compd 757 (2018) 87 https://doi.org/10.1016/j.jallcom.2018.05.057.

    CAS  Article  Google Scholar 

  10. Shivam V, Basu J, Pandey V K, Shadangi Y, and Mukhopadhyay N K, Adv Powder Technol. 29 (2018) 2221 https://doi.org/10.1016/j.apt.2018.06.006.

    CAS  Article  Google Scholar 

  11. Shivam V, Shadangi Y, Basu J, and Mukhopadhyay N K, J. Mater. Res. 34 (2019) 787 https://doi.org/10.1557/jmr.2019.5.

    CAS  Article  Google Scholar 

  12. Sriharitha R, Murty B S, and Kottada R S, Intermetallics 32 (2013) 119 https://doi.org/10.1016/j.intermet.2012.08.015.

    CAS  Article  Google Scholar 

  13. Singh S, Wanderka N, Murty B S, Glatzel U, and Banhart J, Acta Mater 59 (2011) 182 https://doi.org/10.1016/j.actamat.2010.09.023.

    CAS  Article  Google Scholar 

  14. Mukhopadhyay N K, Curr. Sci. 109 (2015) 665.

    Article  Google Scholar 

  15. Pandey V K, Shivam V, Sarma B N, and Mukhopadhyay N K, Mater. Res. Express. 6 (2020) 1265b9 https://doi.org/10.1088/2053-1591/ab618f.

    CAS  Article  Google Scholar 

  16. Shivam V, Sanjana V, Mukhopadhyay N K, Trans. Indian Inst. Met 73 (2020) 821 https://doi.org/10.1007/s12666-020-01892-1.

    CAS  Article  Google Scholar 

  17. Murty B S, Yeh J W, Ranganathan P P, and Bhattacharjee S , High-Entropy Alloys, 2nd Edition, Elsevier, 2019. https://www.elsevier.com/books/high-entropy-alloys/murty/978-0-12-800251-3.

  18. Steurer W, Mater. Charact. 162 (2020) 110179 https://doi.org/10.1016/j.matchar.2020.110179.

    CAS  Article  Google Scholar 

  19. Kokai T, Yachu Y, Chienchang J, Tsungshune C, Chewei T, and Jienwei Y, Sci China Tech Sci. 61 (2018) 184 https://doi.org/10.1007/s11431-017-9073-0.

    CAS  Article  Google Scholar 

  20. Yang X, Chen S Y, Cotton J D, and Zhang Y, JOM. 66 (2014) 2009. https://doi.org/10.1007/s11837-014-1059-z.

    CAS  Article  Google Scholar 

  21. Youssef K M, Zaddach A J, Niu C, Irving D L, and Koch C C, Mater Res Lett 3 (2014) 95 https://doi.org/10.1080/21663831.2014.985855.

    CAS  Article  Google Scholar 

  22. Gao M C, Zhang B, Guo S M, Qiao J W, and Hawk J A, Metall Mater Trans A 47 (2016) 3322. https://doi.org/10.1007/s11661-015-3091-1.

    CAS  Article  Google Scholar 

  23. Li H F, Xie X H, Zhao K, Wang Y B, Zheng Y F, Wang W H, and Qin L, Acta Biomater. 9 (2013) 8561. https://doi.org/10.1016/j.actbio.2013.01.029.

    CAS  Article  Google Scholar 

  24. Li R, Gao J C, and Fan K, Mater Sci Forum 650 (2010) 265. https://doi.org/10.4028/www.scientific.net/msf.650.265.

    CAS  Article  Google Scholar 

  25. Li R, Gao J C, and Fan K, Mater Sci Forum 686 (2011) 235. https://doi.org/10.4028/www.scientific.net/msf.686.235.

    CAS  Article  Google Scholar 

  26. Feng R, Gao M C, Zhang C, Guo W, PoplawskyJ D, Zhang F, Hawk J A, Neuefeind J C, Ren Y, and Liaw P K, Acta Mater 146 (2018) 280 https://doi.org/10.1016/j.actamat.2017.12.061.

    CAS  Article  Google Scholar 

  27. Chen Y L, Tsai C W, Juan C C, Chuang M H, Yeh J W, Chin T S, and Chen S K, J. Alloys Compd 506 (2010) 210 https://doi.org/10.1016/j.jallcom.2010.06.179.

    CAS  Article  Google Scholar 

  28. Sanchez J M, Vicario I, Albizuri J, Guraya T, and Garcia J C, J Mater Res Technol 8 (2019) 795. https://doi.org/10.1016/j.jmrt.2018.06.010.

    CAS  Article  Google Scholar 

  29. Senkov O N, Senkova S V, Woodward C, Miracle D B, Acta Mater. 61 (2013) 1545. https://doi.org/10.1016/j.actamat.2012.11.032.

    CAS  Article  Google Scholar 

  30. Senkov O N, Senkova S V, Miracle D B, and Woodward C, Mater Sci Eng A 565 (2013) 51. https://doi.org/10.1016/j.msea.2012.12.018.

    CAS  Article  Google Scholar 

  31. Stepanov N D, Shaysultanov D G, Salishchev G A, and Tikhonovsky M A, Mater Lett 142 (2015) 153. https://doi.org/10.1016/j.matlet.2014.11.162.

    CAS  Article  Google Scholar 

  32. Stepanov N D, Yurchenko N Y, Sokolovsky V S, Tikhonovsky M A, and Salishchev G A, Mater. Lett. 161 (2015) 136. https://doi.org/10.1016/j.matlet.2015.08.099.

    CAS  Article  Google Scholar 

  33. Khanchandani H, Sharma P, Kumar R, Maulik O, and Kumar V, Adv Powder Technol. 27 (2016) 289. https://doi.org/10.1016/j.apt.2016.01.001.

    CAS  Article  Google Scholar 

  34. Maulik O, and Kumar V, Mater Charact 110 (2015) 116. https://doi.org/10.1016/j.matchar.2015.10.025.

    CAS  Article  Google Scholar 

  35. Maulik O, Kumar D, Kumar S, Fabijanic D M, and Kumar V, Intermetallics 77 (2016) 46. https://doi.org/10.1016/j.intermet.2016.07.001.

    CAS  Article  Google Scholar 

  36. Miedema A R, de Châtel P F, de Boer F R, Phys. B + C 100 (1980) 1. https://doi.org/10.1016/0378-4363(80)90054-6

    CAS  Article  Google Scholar 

  37. Williamson G, and Hall W, Acta Metall 1 (1953) 22 https://doi.org/10.1016/0001-6160(53)90006-6.

    CAS  Article  Google Scholar 

  38. Mao P, Yu B, Liu Z, Wang F, and Ju Y, Trans Nonferrous Met Soc China 24 (2014) 2920. https://doi.org/10.1016/s1003-6326(14)63427-0.

    CAS  Article  Google Scholar 

  39. Maulik O, Kumar D, Kumar S, Dewangan S K, and Kumar V, Mater. Res. Express. 5 (2018) 052001 10.1088/2053-1591/aabbca.

    CAS  Article  Google Scholar 

  40. Chen Y L, Hu Y H, Hsieh C A, Yeh J W, and Chen S K, J Alloys Compd 481 (2009) 768 https://doi.org/10.1016/j.jallcom.2009.03.087.

    CAS  Article  Google Scholar 

  41. Zhang Y, Zhou Y J, Lin J P, Chen G L, and Liaw P K, Adv Eng Mater 10 (2008) 534. https://doi.org/10.1002/adem.200700240.

    CAS  Article  Google Scholar 

  42. Guo S, and Liu C T, Prog Nat Sci Mater Int 21 (2011) 433 https://doi.org/10.1016/s1002-0071(12)60080-x.

    Article  Google Scholar 

  43. Yang X, and Zhang Y, Mater Chem Phys 132 (2012) 233 https://doi.org/10.1016/j.matchemphys.2011.11.021.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Profs. S Lele, R K Mandal, B S Murty and Dr. B Mukherjee for many stimulating discussions. The authors also thank Dr. R Manna for extending the facilities of the Advanced Research Centre for Iron and Steel (ARCIS) as its Coordinator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, V.K., Shadangi, Y., Shivam, V. et al. Synthesis, Characterization and Thermal Stability of Nanocrystalline MgAlMnFeCu Low-Density High-Entropy Alloy. Trans Indian Inst Met 74, 33–44 (2021). https://doi.org/10.1007/s12666-020-02114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02114-4

Keywords

  • High-entropy alloy
  • Phase evolution
  • Spark plasma sintering
  • Low-density HEA
  • Mechanical properties