Skip to main content
Log in

Thermal and Weld Bead Characteristics of Bead-on-Plate PGMA Welding of Dissimilar ASS Bead on HSLA Plate

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The research work has focused on identifying the influence of pulsed gas metal arc welding (PGMAW) parameters on the austenitic stainless steel (ASS) weld bead on high-strength low-alloy (HSLA) steel plate. The effect of pulse parameters such as dimensionless factor (ϕ), mean current (Im), and heat input (Ω) has been analyzed on the thermal behavior of weld, weld pool geometry, and the weld bead microstructure. The influence of ϕ on the thermal and metal transfer behaviors has been also examined to produce the desired weld bead quality. The optimized pulse parameters such as Im (160–230 A), Ω (6.5–11.2 kJ/cm), ϕ (0.05–0.25), and welding speed (S) (15–25 cm/min) have been considered to perform the experiment. The microstructural evaluation of the weld bead was carried out by an optical microscope. The enhanced Im from 160 A to 230 A considerably increased the amount of temperature received by the weld pool (QT) from 4525 to 6525 J/S. The results also depicted that the increase of ϕ from 0.05 to 0.25 predominantly reduced the width of the weld bead (Wb) from 15 to 13.5 mm, depth of penetration (Pd) from 3.5 to 2.5 mm, and area of fusion (Af) from 40 to 30 mm2, respectively. It is also found that the formation of fine-grain microstructure in the weld deposit primarily happened due to the effect of thermal behaviors such as QT, transfer of heat content from filler to weld pool (Qf), and characteristics of filler metal transfer to the weld deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

a h, b h, c h :

Ellipsoidal heat source parameters (m)

a h, b h, c hf, c hb :

Double ellipsoidal heat source parameters (m)

A s :

Surface area of the droplets transferred per pulse (m2)

A F :

Area of fusion (mm2)

A R :

Area of reinforcement (mm2)

A W :

Cross-sectional area of the filler wire, m2 or Area of weld deposit (m2)

b :

Thermal diffusivity of HSLA steel 1.172 × 10−5 (m2/sec)

C 1 :

Specific heat of ASS = 0.500 (J g−1 K−1)

C 2 :

Specific heat of HSLA Steel = 0.686 (J g−1 K−1)

C R :

Cooling rate (K/sec)

D :

Diameter of droplets (m)

d :

Thickness of the base plate (m)

D L :

Dilution of weld deposit (%)

f :

Pulse frequency (Hz)

G :

Solidification temperature gradient

HSLA:

High-strength low-alloy steel

I :

Welding current (A)

Nu:

Nusselt number

Ω:

Heat input per unit length of weld (kJ cm−1)

N D :

Number of droplets transfer per pulse

Q AW, ρ 1, ρ 2, c 1, c 2, a, b, T 0 and a h, b h, c hf, c hb :

Weld pool heat exchanged from the arc

Q AW :

Arc heat transferred to the weld pool (J s−1)

Q de :

Heat content per unit mass of the filler wire at the time of deposition (J kg−1)

Q f :

Heat of the filler metal transferred to the weld pool (J s−1)

Q r :

Heat generated due to resistive heating of the filler wire (J s−1)

Q R :

Heat loss during flight of the droplets due to radiation (J kg−1)

Q T :

Total heat transferred per unit time (J s−1)

R G :

Growth rate of dendrite (cm/min)

R LG :

Ripple lag ratio

S :

Welding speed (cm/min)

T :

Temperature (K)

T de :

Temperature at any point in the weld due to arc heating (K)

ρ 1 :

Mass density of the ASS (kg m−3)

ρ 2 :

Mass density of the HSLA steel (kg m−3

ϕ :

Summarized influence of pulse parameters factor

ζ :

Work function of the cathode surface (Mild steel = 4.5 eV)

λ 1 :

Thermal diffusivity of γ-SS × 10−6 (m2/sec)

λ 2 :

Thermal diffusivity of Mild steel 1.172 × 10−6 (m2/sec)

I b :

Base current (A)

I e :

Peak current in excess over the base current (A)

I eff :

Effective current (A)

c hf :

Front side of the heat source

c hb :

Back side of the heat source

I m :

Mean current (A)

m t :

Mass of filler metal transmitted per pulse (kg)

I p :

Peak current (A)

t p :

Peak time in (ms)

t b :

Base time in (ms)

j eff :

Effective current density (J A−2)

k 1 :

Thermal conductivity of γ-SS = 16 (W m−1 K−1)

k 2 :

Thermal conductivity of Mild Steel = 60 (W m−1 K−1)

R and ξ :

Central and x-axis distance of the welding arc (mm)

L d :

Length of dendrite arm (μm)

L rg :

Length of ripple lag (mm)

L w :

Weld length (mm)

R and ξ :

Central and x-axis distance of the welding arc (mm)

T de :

Temperature of the droplet at the time of deposition (K)

T m :

Melting temperature (K)

T WP :

Average weld pool temperature (K)

V :

Arc voltage (V)

V eff :

Effective velocity of plasma (m s−1)

V W :

Wire feed speed (m s−1)

x, y, z :

Rectangular coordinates w.r.t. to a fixed origin

x hw :

Distance between the heat source and the rear of the weld pool (mm)

ASS:

Austenitic stainless steel

ξ:

Distance of the point along the x-axis with respect to the origin of moving heat source (m)

ψ:

Effective melting potential at anode (Mild steel = 5.8 V) or angle between the tangent to the weld pool boundary and the welding direction (deg)

η s :

Process efficiency

t :

Time (sec)

References

  1. Huang M L, and Wang L, Met Mater Trans A 29A (1998) 3037.

    Article  CAS  Google Scholar 

  2. Cox C W, and Kiser S D, Weld J 67 (1998).

  3. Sun, and Ion, J C, J Mater Sci 30 (1995) 4205.

  4. Madhusudan R G, J Mat Pro-Technol 23 (2000).

  5. Prasad SN, Mater Sci Eng (2003) 287.

  6. Ghosh P K, Goyal V K, Dhiman H K, and Kumar M, Sci Technol Weld J 11 (2006) 232.

    Article  CAS  Google Scholar 

  7. Lenin S D, Rajamurugan G, and Devakumaran K, Mat Today Proc, 5 (2018) 7828. https://doi.org/10.1016/j.matpr.2017.11.463.

  8. Lothongkum G, Chaumbai P, and Bhandhubanyong P, J Mater Process Technol 89-90 (1999) 410.

    Article  Google Scholar 

  9. Lundin CD, Wel Res Supp 61 (1982) 58.

    Google Scholar 

  10. Robert W M, Principles of Welding, Wiley, New York (1999).

    Google Scholar 

  11. Davis S R, Hard facing, Weld cladding and dissimilar metal joining, welding brazing, and soldering. In: ASM handbook, vol. 6. Ohio, ASM International; (1993) 789.

  12. Banshi P A, and Ghosh P K, Mat Manuf Proc, 25 (2010) 1251. https://doi.org/10.1080/10426914.20https://doi.org/10.489593.

  13. Allum, C J, and Quintino L, Metal Constr 17 (1985(b)) 314R.

  14. Ramkishor A, Jag P D, Agrawal B P, Ghosh P K, Ravindra K, Sudhir K, and Kaushal K, Mater Res Exp 5 (2018) 096502.

  15. Agrawal B P, and Ghosh P K, Int J Adv Manuf Tech 77 (2015) 1681. https://doi.org/10.1007/s00170-014-6450-y.

    Article  Google Scholar 

  16. ASTM E8/E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken (2016) www.astm.org.

  17. ASTM E23-18, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken (2018), www.astm.org.

  18. Christensen N, De Davis V L, and Gjermundsen K, Brit Weld J 12 (1965) 54.

  19. Radaij D, Heat Effects on Welding, Springer, (1992) Berlin.

  20. Ghosh P K, and Dorn L, Trans Indian Inst Met, 47 (1994) 401.

    CAS  Google Scholar 

  21. Ghosh P K, Gupta SR, and Randhawa H S, Int J J Mater 11 (1999) 99.

    Google Scholar 

  22. Randhawa H S, Ghosh P K, and Gupta S R, ISIJ Int, 40 (2000) 71.

    Article  CAS  Google Scholar 

  23. Ghosh P K, Dorn L, and Goecke S F, Int J J M 13 (2001) 40.

    Google Scholar 

  24. Ghosh P K, Dorn L, Hübner M, and Goyal V K, J Mater Proc Technol 194 (2007) 163.

    Article  CAS  Google Scholar 

  25. Ghosh P K, and Dorn L, Trans Ind Inst Met 47 (1994) 401.

    CAS  Google Scholar 

  26. Ghosh P K, Decide pulse parameters for desired properties of pulsed current GMAW weld, International Welding Conference (IWC-99) on Welding and Allied Technology Challenges in the 21st century, 15-17 (1999) 18.

  27. Goyal V K, Ghosh P K, and Saini J S, Influence of pulse parameters on solidification behavior of pulsed current GMA weld deposition on Al-Mg alloy, in Proceeding International Conference Manufacture Technology Design & Research Conference, (22nd AIMTDR), MIED, IIT Roorkee held on 21–23, (2006) 481.

  28. Goyal V K, Ghosh P K, and Saini J S, Met Mater Trans 39A (2008) 3260.

    Article  CAS  Google Scholar 

  29. Lancaster J F, The Physics of Welding, Pergamon Press, (1984) New York.

  30. Praveen P, Yarlagadda P K D V, and Kang M J, J Mat Proc Technol, 164–165 (2005) 1113.

    Article  Google Scholar 

  31. Goyal V K, Ghosh P K, and Saini J S, Met Mater Tran A 38 (2007) 1794.

    Article  Google Scholar 

  32. Goldak J, Chakravarti A, and Bibby M, Met Mater Trans B 15B (1984) 299.

    Article  Google Scholar 

  33. Rajamurugan G, and Ghosh P K, Asian J Res Soc Sci Hum, 6 (2016) 267. https://doi.org/10.5958/2249-7315.2016.00395.6.

    Article  Google Scholar 

  34. Rajamurugan, G, and Ghosh P K, Asian J Res Soc Sci Hum 6 (2016) 277. https://doi.org/10.5958/2249-7315.2016.00396.8.

    Article  Google Scholar 

  35. Goyal V K, Ghosh P K, and Saini J S, J Met Proc Technol 209 (2008(b)) 1318.

  36. Ghosh P K, Goyal V K, Dhiman H K, and Kumar M, Sci Technol Weld Join 11 (2006) 232.

    Article  CAS  Google Scholar 

  37. Ghosh P K, and Sharma V, Mat Tran JIM 32 (1991) 145.

    Article  CAS  Google Scholar 

  38. Metals Handbook, 3, 9th Ed., ASM International, Metal Park (1979(a)).

  39. Ghosh P K, Dorn L, and Goecke S F, Join Mater, 13 (2001) 1.

    Google Scholar 

  40. Ghosh P K, Dorn L, Hubner M, and Goyal V K, J Mat Proc Technol, 194 (2007(a)) 163.

  41. Rajamurugan G, Dinesh D, and Ramakrishnan A, Int J Mech Prod Eng Res Dev 8 (2018) 1641.

  42. Maruo H, and Hirata Y, Study of Pulsed MIG Welding, IIW Doc. SG 212-258-84, Welding Department, Osaka University (1984) Japan.

  43. Yue X, Lippold J C, Alexandrov B T, and Babu S S, Weld J (2012) 67.

  44. ASM handbook, High-strength low-alloy steels, ASM International, Materials society, (2001) 193.

  45. Xiaofei Y, Shenhao C, and Liang W, J Serb Chem Soc, 74 (2009) 1293.

    Article  Google Scholar 

  46. Ghosh P K, Dorn L, Devakumaran K, and Hofmann F, ISIJ Int 49 (2009(a)) 261.

  47. Kulkarni S G, Narrow Gap Pulse Current Gas Metal Arc Welding of Thick Wall 304LN Stainless Steel Pipe, Ph.D. Thesis, (2008); IIT Roorkee, India.

  48. Goyal V K, Ghosh, P K, and Saini J S, Mater Trans A 39A (2008(a)) 3260.

  49. Hoyt J J, Asta M, and Karma A, Mat Sci Eng 41 (2003) 121.

    Article  Google Scholar 

  50. Arselsen O M, Grong O, Ryum N, and Christensen N, Acta Metall 34 (1986) 1807.

    Article  Google Scholar 

  51. Rajamurugan G, Ghosh P K, and Prabu K, et al., Trans Indian Inst Met 73 (2020) 595. https://doi.org/10.1007/s12666-020-01871-6.

    Article  CAS  Google Scholar 

  52. Li G F, and Charles E A, Corr Sci (2001) 1963.

Download references

Acknowledegments

The authors acknowledge the Board of Research in Nuclear Sciences (BRNS) for the material support to carry out this work and record their sincere thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajamurugan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamurugan, G., Ghosh, P.K., Krishnasamy, P. et al. Thermal and Weld Bead Characteristics of Bead-on-Plate PGMA Welding of Dissimilar ASS Bead on HSLA Plate. Trans Indian Inst Met 74, 89–106 (2021). https://doi.org/10.1007/s12666-020-02106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02106-4

Keywords

Navigation