Skip to main content
Log in

Microstructural, Dynamic and Residual Stress Analysis of Metal Matrix Composite Shafts

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Metal matrix shafts are widely used in industries, and various research works are available for the characterization and applications of these components. These research works are limited to the conventional characterization of the material. In this paper, a novel characterization approach has been adopted, which determines the effect of reinforcements on the dynamic properties and residual stress of the Al 6061/Al2O3 shafts. Long and slender shafts were fabricated through a stir casting process. Grain structure was obtained through optical microscopy, and morphological evaluation of the composites was performed through scanning electron microscopy. In addition, X-ray diffraction patterns were analysed, and residual stress was calculated by X-ray residual stress measurement system μ-X360 Ver. 2.3.0.1. Tensile residual stress was observed for pure Al 6061 alloy shaft on the surface of shafts, whereas compressive residual stress was observed in the case of composite shafts. The magnitude of the compressive residual stress increased with the increased wt% of alumina in the Al 6061 matrix. The amplitudes of vibration were also reduced by the introduction of reinforcements in metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sarmasti A B, Yazdanirad M, Khezrabad M N, and Karbalaie M, Mater Sci Technol 27 (2011) 1653.

    Article  CAS  Google Scholar 

  2. Koczak M J, Khatri S C, Allison J E, and Bader M G, in Fundamentals of Metal-Matrix Composites, (eds) Suresh S, Mortensen A and Needleman A, Elsevier, Amsterdam (2013), p 297.

  3. Rawal S, Jom. 53 (2001) 14.

    Article  CAS  Google Scholar 

  4. Prasad S V, and Asthana R, Tribol Lett 17 (2004) 445.

    Article  CAS  Google Scholar 

  5. Soltani S, Khosroshahi A R, Mousavian T R, and Jiang Z Y, Rare Met 36 (2017) 581.

    Article  CAS  Google Scholar 

  6. Pazhouhanfar Y, and Eghbali B, Mater Sci Eng A 710 (2018) 172.

    Article  CAS  Google Scholar 

  7. Miracle D B, Compos Sci Technol 65 (2005) 2526.

    Article  CAS  Google Scholar 

  8. Ravi K R, Sreekumar V M, Pillai R M, Mahato C, Amaranathan K R, and Kumar R A, Mater Des 28 (2007) 871.

    Article  CAS  Google Scholar 

  9. Sahu M K, and Sahu R K, Trans Indian Inst Met 70 (2017) 2563.

    Article  CAS  Google Scholar 

  10. Singh S, Singh I, and Dvivedi A, Int J Cast Met Res 30 (2017) 356.

    Article  Google Scholar 

  11. Sahu M K, and Sahu R K in Advanced Casting Technologies, (ed) Vijayaram T R, IntechOpen Press, London (2018), p 1076.

  12. Chauhan H, Khan I, and Chauhan A, Int Res J Eng Technol 4 (2017) 2407.

    Google Scholar 

  13. Ahmed O, and Mohamed O, Synthesis and Characterization of Al6061/Al2O3 Metal Matrix Nanocomposites Fabricated by Stir-casting, PhD Thesis, Beni Suef University, Egypt (2019).

  14. Pitchayyapillai G, Seenikannan P, Balasundar P, and Narayanasamy P, Trans Nonferrous Met Soc China 27 (2017) 2137.

    Article  CAS  Google Scholar 

  15. Narayanasamy P, Selvakumar M, Ramkumar T, Mohanraj M, and Pillai G P, J Therm Anal Calorim 412 (2020) 1.

    Google Scholar 

  16. Pitchayyapillai G, Seenikannan P, Raja K, and Chandrasekaran K, Adv Mater Sci Eng 2016 (2016) 1.

    Article  Google Scholar 

  17. Noyan I C, and Cohen J B, Measurement by Diffraction and Interpretation, Springer, New York (1987), p 75.

    Google Scholar 

  18. Ohya S, J Soc Mater Sci 10 (2005) 05.

    Google Scholar 

  19. Kondoh T, Goto T, Sasaki T, and Hirose Y, Adv X-ray Anal 43 (2000) 107.

    Google Scholar 

  20. Gelfi M, Bontempi E, Roberti R, and Depero L E, Acta Mater 52 (2004) 583.

    Article  CAS  Google Scholar 

  21. Wang J S, Hsieh C C, Lai H H, Kuo C W, Wu P T Y, and Wu W, Mater Charact 99 (2015) 248.

    Article  CAS  Google Scholar 

  22. Wang, B, and Qu S, IOP Conf Ser Mater Sci Eng 397 (2018) 012112.

    Article  Google Scholar 

  23. Agarwal B D, Lifshitz J M, Lawrence J, and Broutman Fibre Sci Technol 7 (1974) 45.

    Article  Google Scholar 

  24. Clegg W J, Acta Metall 36 (1988) 2141.

    Article  CAS  Google Scholar 

  25. Wang Z, Chen T K, and Lloyd D J, Metall Trans A 24 (1993) 197.

    Article  Google Scholar 

  26. Chatterjee S, Sur S G, Bandyopadhyay S, and Basumallick A, J Compos Mater 50 (2016) 2687.

    Article  CAS  Google Scholar 

  27. Arsenault R J, and Taya M, Acta Metall 35 (1987) 651.

    Article  CAS  Google Scholar 

  28. Jain A K, Rastogi V, and Agrawal A K, Proc Eng 144 (2016) 1451.

    Article  Google Scholar 

  29. Tanaka K, Mech Eng Rev 6 (2019) 378.

    Article  Google Scholar 

  30. Nguyen V, and Hwang P, Int J Mech Eng App 3 (2015) 22.

    Google Scholar 

  31. Valiev R Z, Islamgaliev R K, Kuzmina N F, Li Y, and Langdon T G, Scr Mater 40 (1998) 117.

    Article  Google Scholar 

  32. Borbély A, Kenesei P, and Biermann H, Acta Mater 54 (2006) 2735.

    Article  Google Scholar 

Download references

Acknowledgements

This paper incorporates work carried out by the lead author at Design Centre, Department of Mechanical, Production, Industrial and Automobile Engineering, Delhi Technological University, Delhi, India. The authors would also like to acknowledge the SEM Central Facility at IIT Delhi for providing ZEISS EVO Series Scanning Electron Microscope EVO 50 to perform Scanning Electron Microscopy of composite samples. Grant for performing experimental work has been provided by TEQIP-III Project under “Academic Processes (1.3.2.5—Research and Development)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Rastogi, V. & Agrawal, A.K. Microstructural, Dynamic and Residual Stress Analysis of Metal Matrix Composite Shafts. Trans Indian Inst Met 73, 2995–3005 (2020). https://doi.org/10.1007/s12666-020-02101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02101-9

Keywords

Navigation