Skip to main content
Log in

Effect of Hot Rolling Reduction on Dynamic Recrystallization of Nb–V Bearing HSLA Steel: Physical Simulation and Microtexture Evolution

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, the effect of hot rolling reduction ratio on dynamic recrystallization (DRX) of Nb–V bearing high-strength low-alloy (HSLA) steel was investigated. The hot rolling process was simulated physically by performing single- and double-hit plane strain compression using a thermo-mechanical simulator under similar conditions as experienced in the plant. The austenite no-recrystallization temperature (TNR) value of the steel was determined through multi-hit plane strain compression in Gleeble simulator as well as using the actual rolling mill log data. The TNR value (~ 940–945 °C) obtained from both the methods were found to be in good agreement. The rolling reduction was varied in the range of 40–50% in the initial two passes. The kinetics of DRX were evaluated using the Avrami relationship. The dynamic recrystallization behavior was characterized by microtexture analysis using electron backscattered diffraction. The critical strain required for the instigation of DRX in the Nb–V HSLA steel was found to be ~ 0.15. Furthermore, a true strain of ~ 0.8, equivalent to 50% reduction in thickness was required in first pass for complete recrystallization to occur in the chosen steel. The grain orientation spread (GOS) analysis confirmed the presence of recrystallized grains with GOS values less than 2° in the specimens deformed with 40–50% and 50–40% reduction schemes between first two passes of rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garcia C I, in Automotive Steels: Design, Metallurgy, Processing and Applications, (ed) Rana R, and Singh S B, Woodhead Publishing, Elsevier (2017), p 145.

  2. Ouchi C, and Okita T, Trans ISIJ 22 (1982) 543.

    Article  CAS  Google Scholar 

  3. Zheng Q G, Ying T, and Jie Z, Proc Inst Mech Eng 224 (2010) 1707.

    Article  Google Scholar 

  4. Quan G Z, Liu K W, Zhou J and Chen B, Trans Nonferrous Met Soc China, 19 (2009) s537.

    Article  CAS  Google Scholar 

  5. McQueen H J, and Jonas J J, Treatise Mater Sci Technol 6 (1975) 394.

    Google Scholar 

  6. Sakai T, and Jonas J J, Acta Metall 32 (1984) 189.

    Article  CAS  Google Scholar 

  7. Montheillet F, and Jonas J J, Encyclopedia Appl Phys 16 (1996) 205.

    Google Scholar 

  8. Cabrera J M, Al-Omar A A, Jonas J J, and Prado J M, Metall Mater Trans A 28 (1997) 2233.

    Article  Google Scholar 

  9. Kugler G, and Turk R, Acta Mater 52 (2004) 4659.

    Article  CAS  Google Scholar 

  10. Carsi M, Peiialba F, Larreaa M T, and Ruano O A, Mater Sci Eng A 234236 (1997) 703.

    Article  Google Scholar 

  11. Wang B X, Liu X H, and Wang G D, Mater Sci Technol 21 (2005) 798.

    Article  CAS  Google Scholar 

  12. Stewart G R, Jonas J J, and Montheillet F, ISIJ Int 44 (2004) 1581.

    Article  CAS  Google Scholar 

  13. Irvine K J, Pickering F B, and Gladman T, J. Iron Steel Inst 205 (1967) 161.

    CAS  Google Scholar 

  14. Bai D Q, Metall Mater Trans A 24 (1993) 2151.

    Article  Google Scholar 

  15. Boratto F, Barbosa R, Yue S, and Jonas J J, in Proc. Int. Symp. Metallurgy of Vacuum-Degassed Carbon Steel Products, Indianapolis, (ed) Pradhan R, The Metallurgical Society of AIME, Warrendale, USA (1990), p 395.

  16. Barbosa R, Boratto F, Yue S, and Jonas J J, Proc. of the International Conference on Processing Microstructure and Properties of HSLA Steels, (ed) DeArdo A J, The Mineral, Metals and Materials Society (1987), p 51.

  17. Sims R B, Proc Inst Mech Eng 168 (1954) 191.

    Article  Google Scholar 

  18. Maccagno T M, Jonas J J, Yue S, McCrady B J, Slobodian R, and Deeks D, ISIJ Int 34 (1994) 917.

    Article  CAS  Google Scholar 

  19. Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford (1996), p 363.

    Google Scholar 

  20. Sakai T, Akben M G, and Jonas J J, Acta Metall 31(1983) 631.

    Article  CAS  Google Scholar 

  21. Akbari G H, Sellars C M, and Whiteman J A, Acta Mater 45 (1997) 5047.

    Article  CAS  Google Scholar 

  22. Belyakov A, Tsuzaki K, Miura H, and Sakai T, Acta Mater 51 (2003) 847.

    Article  CAS  Google Scholar 

  23. Avrami M, J Chem Phys 7 (1939) 1103.

    Article  CAS  Google Scholar 

  24. Avrami M, J Chem Phys 8 (1940) 212.

    Article  CAS  Google Scholar 

  25. Johnson W A, and Mehl R F, Trans AIME 135 (1939) 416.

    Google Scholar 

  26. Medina S F, and Hernandez C A, Acta Mater 44 (1996) 165.

    Article  CAS  Google Scholar 

  27. Jonas J J, Quelennec X, Jiang L, and Martin E, Acta Mater 57 (2009) 2748.

    Article  CAS  Google Scholar 

  28. Marchattiwar A, Sarkar A, Chakravartty J K, and Kashyap B P, J Mater Eng Perform 22 (2013) 2168.

    Article  CAS  Google Scholar 

  29. Poliak E I, and Jonas J J, Acta Mater 44 (1996) 127.

    Article  CAS  Google Scholar 

  30. Estrin Y, and Mecking H, Acta Metall 32 (1984) 57.

    Article  Google Scholar 

  31. Verlinden B, Driver J, Samajdar I, and Doherty R.D, Thermo-Mechanical Processing of Metallic Materials, Pergamon Press, Oxford (2007), p 172.

    Google Scholar 

  32. Ghosh A, Kundu S, and Chakrabarti D, Scr Mater 81 (2014) 8.

    Article  CAS  Google Scholar 

  33. Anijdan S H M, Hoseini M, and Yue S, Mater Sci Eng A 528 (2011) 6788.

    Article  CAS  Google Scholar 

  34. Kestens L, and Jonas J J, Transformation and Recrystallization Texture Associated with Processing, ASM Handbook, vol 14A (2005), p 685.

    Google Scholar 

  35. Morito S, Huang X, Furuhara T, Maki T, and Hansen N, Acta Mater 54 (2006) 5323.

    Article  CAS  Google Scholar 

  36. Cho S-H, Kang K-B, and Jonas J J, ISIJ Int 41 (2001) 63.

  37. Field D P, Bradford L T, Nowell M M, and Lillo T M, Acta Mater 55 (2007) 4233.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CoEST and National OIM-Texture Lab at IIT Bombay for providing access to Gleeble-3800 and EBSD facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishabh Bharadwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadwaj, R., Prasad, M.J.N.V., Sam, S. et al. Effect of Hot Rolling Reduction on Dynamic Recrystallization of Nb–V Bearing HSLA Steel: Physical Simulation and Microtexture Evolution. Trans Indian Inst Met 73, 2919–2930 (2020). https://doi.org/10.1007/s12666-020-02097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02097-2

Keywords

Navigation