Skip to main content

Advertisement

Log in

A New Modified Cyclic Extrusion Channel Angular Pressing (CECAP) Process for Producing Ultrafine-Grained Mg Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, a new modified cyclic extrusion channel angular pressing (CECAP) process with multi-pass capability is presented for producing ultrafine-grained (UFG) Mg alloy. In this method, an additional extrusion stage with a low extrusion ratio is added at the end of the CECAP process to enhance hydrostatic stresses, equivalent strain, and facilitation of the process implementation. The experimental results showed a remarkable grain refinement with a relatively uniform distribution of microstructure and β-phase in the new CECAP processed sample. The average grain size decreased from ~75 µm in annealed condition to 4.5 µm and 3.5 µm in CECAP and new CECAP processes, respectively. Also, more dispersion of the β-phase with smaller sizes was observed in the processed microstructure. The hardness and its uniform distribution were increased significantly. The compressive yield stress (CYS) was enhanced to about 153.3 MPa from the initial value of ~85 MPa. Also, both the strength and ductility of the new CECAP processed sample were higher than those of CECAP processed one. These excellent properties might attribute to higher hydrostatic compressive stresses resulting from the last low ratio extrusion stage which was almost 50% higher in the new CECAP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Segal V, Reznikov V, Dobryshevshiy A, and Kopylov V, Russ Metall (Metally) 1 (1981) 99.

    Google Scholar 

  2. Segal V, Mater Sci Eng A 197 (1995) 157.

    Google Scholar 

  3. Abdolvand H, Sohrabi H, Faraji G, and Yusof F, Materials Letters 143 (2015) 167.

    CAS  Google Scholar 

  4. Gunderov D, Polyakov A, Semenova I, Raab G, Churakova A, Gimaltdinova E, Sabirov I, Segurado J, Sitdikov V, and Alexandrov I, Mater Sci Eng A 562 (2013) 128.

    CAS  Google Scholar 

  5. Stepanov N, Kuznetsov A, Salishchev G, Raab G, and Valiev R, Mater Sci Eng A 554 (2012) 105.

    CAS  Google Scholar 

  6. Zhang J, Zhang K S, Hwai-Chung W and, Yu M H, Trans Nonferrous Metals Soc China 19 (2009) 1303.

    CAS  Google Scholar 

  7. Kim H S, Mater Sci Eng A 430 (2006) 346.

    Google Scholar 

  8. Patil B V, Chakkingal U, and Kumar T P, World Acad Sci Eng Technol 62 (2010) 714.

    Google Scholar 

  9. Faraji G, Mashhadi M M, and Kim H S, Mater Lett 65 (2011) 3009.

    CAS  Google Scholar 

  10. Faraji G, Babaei A, Mashhadi M M, and Abrinia K, Mater Lett 77 (2012) 82.

    CAS  Google Scholar 

  11. Shen J, Gärtnerová V, Kecskes L J, Kondoh K, Jäger A, and Wei Q, Mater Sci Eng A 669 (2016) 110.

    CAS  Google Scholar 

  12. Matsubara K, Miyahara Y, Horita Z, and Langdon T, Acta Materialia 51 (2003) 3073.

    CAS  Google Scholar 

  13. Stráská J, Janeček M, Čížek J, Stráský J, and Hadzima B, Mater Charact 94 (2014) 69.

    Google Scholar 

  14. Richert J and Richert M, Aluminium 62 (1986) 604.

    Google Scholar 

  15. Pardis N, Talebanpour B, Ebrahimi R and Zomorodian S, Mater Sci Eng A 528 (2011) 7537.

    CAS  Google Scholar 

  16. Amani S, Faraji G, and Abrinia K, J Manuf Process 28 (2017) 197.

    Google Scholar 

  17. Yan Z, Zhang Z, Li X, Xu J, Wang Q, Zhang G, Zheng J, Fan H, Xu K and Zhu J, J Alloys Compd 822 (2020)153698.

    CAS  Google Scholar 

  18. Ensafi M, Faraji G, and Abdolvand H, Mater Lett 197 (2017) 12.

    CAS  Google Scholar 

  19. Faraji G, and Kim H, Mater Sci Technol 33 (2017) 905.

    CAS  Google Scholar 

  20. Nouri M, Semnani H M, and Emadoddin E, Metals Mater Int (2020). https://doi.org/10.1007/s12540-020-00668-y.

    Article  Google Scholar 

  21. Kulagin R, Beygelzimer Y, Estrin Y, Ivanisenko Y, Baretzky B, and Hahn H, Metals 9 (2019) 306.

    CAS  Google Scholar 

  22. Ivanisenko Y, Kulagin R, Fedorov V, Mazilkin A, Scherer T, Baretzky B, and Hahn H, Mater Sci Eng A 664 (2016) 247.

    CAS  Google Scholar 

  23. Mostaed E, Vedani M, Hashempour M, and Bestetti M, Biomatter 4 (2014) e28283.

    Google Scholar 

  24. Amani S, Faraji G, Mehrabadi H K, Abrinia K, and Ghanbari H, J Alloys Compd 723 (2017) 467.

    CAS  Google Scholar 

  25. Witte F, Acta biomaterialia, 6 (2010) 1680.

    CAS  Google Scholar 

  26. Poinern G E J, Brundavanam S, Fawcett D, Am J Biomed Eng 2 (2012) 218.

    Google Scholar 

  27. Ge Q, Dellasega D, Demir A G, Vedani M, Acta Biomaterialia 9 (2013) 8604.

    CAS  Google Scholar 

  28. Mostaed E, Fabrizi A, Dellasega D, Bonollo F, and Vedani M, J Alloys Compd 638 (2015) 267.

    CAS  Google Scholar 

  29. Mehrabadi H K, Faraji G, Amani S, Karimpour M, and Ghanbari H, Modares Mech Eng 16(2016) 605.

    Google Scholar 

  30. Kulyasova O, Islamgaliev R,Mingler B, and Zehetbauer M, Mater Sci Eng A 503 (2009) 176.

    Google Scholar 

  31. Figueiredo R B, and Langdon T G, J Mater Sci 45 (2010) 4827.

    CAS  Google Scholar 

  32. Akbaripanah F, Fereshteh-Saniee F, Mahmudi R, and Kim H, Mater Sci Eng A 565 (2013) 308.

    CAS  Google Scholar 

  33. Kim W, Hong S, Kim Y, Min S, Jeong H, and Lee J, Acta Materialia 51 (2003) 3293.

    CAS  Google Scholar 

  34. Fereshteh‐Saniee F, Akbaripanah F, Kim H, and Mahmudi R, Fatigue Fract Eng Mater Struct 35 (2012) 1167.

    CAS  Google Scholar 

  35. Fintová S, Kunz L, J Mech Behav Biomed Mater 42 (2015) 219.

    Google Scholar 

  36. Bettles C, Barnett M, Advances in Wrought Magnesium Alloys: Fundamentals of Processing Properties and Applications, Elsevier, Amsterdam (2012).

    Google Scholar 

  37. Iwahashi Y, Horita Z, Nemoto M, Wang J, and Langdon T G, Scripta Materialia 35 (1996) 143.

    CAS  Google Scholar 

  38. Richert M, McQueen H, and Richert J, Can Metalll Q 37 (1998) 449.

    CAS  Google Scholar 

  39. Lange K, Handbook of Metal Forming, McGraw-Hill Book Company, NewYork, (1985) p. 1216.

    Google Scholar 

  40. Chalasani D, Jain M K, Shankar S, and Fazeli F, J Mater Eng Perform 28 (2019) 123.

    CAS  Google Scholar 

  41. Máthis K, Chmelık F, Trojanová Z, Lukáč P, and Lendvai J, Mater Sci Eng A 387 (2004) 331.

    Google Scholar 

  42. Lichý P, Cagala M, and Beňo J, Mater Technol 47 (2013) 503.

    Google Scholar 

  43. Xu S, Zhao G, Ma X, Ren G, J Mater Process Technol 184 (2007) 209.

    CAS  Google Scholar 

  44. Shin D H, Kim I, Kim J, Zhu Y T, Mater Sci Eng A 334 (2002) 239.

    Google Scholar 

  45. Choi Y C, Kim H S, and Hong S I, Metals Mater Int 15 (2009) 733.

    CAS  Google Scholar 

  46. Lee K M, Kang H G, Huh M Y, and Engler O, Metals Materials Int 16 (2010) 851.

    CAS  Google Scholar 

  47. Chung C, Ding R, Chiu Y, Hodgson M, Gao W, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2009, pp. 012012.

  48. Chung C, Ding R, Chiu Y, Gao W, in: Journal of Physics: Conference Series, IOP Publishing, 2010, pp. 012101.

  49. Chen B, Lin D L, Jin L, Zeng X Q, and Lu C, Mater Sci Eng A 483 (2008) 113.

    Google Scholar 

  50. Shaeri M, Djavanroodi F, Sedighi M, Ahmadi S, Salehi M, and Seyyedein S, J Strain Anal Eng Design 48 (2013) 512.

    Google Scholar 

  51. Ahmadi S, Sedighi M, J Mech Sci Technol 31 (2017) 4189.

    Google Scholar 

  52. Yoon S, Quang P, Hong S, and Kim H, J Mater Process Technol 187 (2007) 46.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Faraji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S., Alimirzaloo, V., Faraji, G. et al. A New Modified Cyclic Extrusion Channel Angular Pressing (CECAP) Process for Producing Ultrafine-Grained Mg Alloy. Trans Indian Inst Met 73, 2447–2456 (2020). https://doi.org/10.1007/s12666-020-02048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02048-x

Keywords

Navigation