Skip to main content
Log in

Investigation of Flow-Formability of an AZ31 Magnesium Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Flow-formability of a Ca-added AZ31 magnesium alloy tube is investigated. The flow-forming process is conducted at various temperatures (100–500 °C), thickness reductions (30–85%), and feed rates (0.1–0.56 mm/rev). Inner and outer surfaces of the tubes are heated by means of a thermal element embedded inside the mandrel and a radiation element, respectively. The formed tubes are visually inspected for the occurrence of cracking and fractures. Microstructures and tensile properties of the samples are analyzed by optical microscopy and tensile test, respectively. It is shown that deformation above 200 °C is required for sound processing with the occurrence of dynamic recrystallization (DRX). Up to 200 °C, the twinning-induced shear banding is the dominant phenomenon in microstructural evolution and responsible for the early strain localization and subsequent fracture. By increasing the temperature, the maximum achievable thickness reduction increases. However, at about 300 °C, the maximum thickness reduction reaches a limit value of about 76%. A twist in the deformed part of the tube occurs at greater thickness reductions. A simple analytical model is presented to analyze the occurrence of the twist phenomenon. Accordingly, a flow-formability map is proposed for the alloy. The DRX grain size is shown to follow a power law with the temperature compensated strain rate known as the Zener–Hollomon parameter. While the grain size is not affected by the feed rate, dimensional accuracy is deteriorated at feed rates over 0.2 mm/rev due to the diametral growth of the workpiece. Based on the tensile test results, by increasing the deformation temperature, the tensile strength increases and the ductility decreases, so that the sample processed at 500 °C shows a brittle fracture. The impacts of temperature on the strength and ductility are attributed to the combined effects of microstructural and texture evolutions during the flow-forming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mordike BL, and Ebert T, Mater Sci Eng A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4.

    Article  Google Scholar 

  2. Fata A, Mater Sci Eng A 674 (2016) 9. https://doi.org/10.1016/j.msea.2016.07.117.

    Article  CAS  Google Scholar 

  3. Nie X W, Xie S, Xu H, and Du Y, Physica B Condens Matter 405 (2010) 1969. https://doi.org/10.1016/j.physb.2010.01.075.

    Article  CAS  Google Scholar 

  4. Yamashita A, Horita Z, and Langdon T G, Mater Sci Eng A 300 (2001) 142. https://doi.org/10.1016/S0921-5093(00)01660-9.

    Article  Google Scholar 

  5. Wang Q, Chen Y, Liu M, Lin J, and Roven H J, Mater Sci Eng A 527 (2010) 2265. https://doi.org/10.1016/j.msea.2009.11.065.

    Article  CAS  Google Scholar 

  6. Chandrasekaran M, and John Y M S, Mater Sci Eng A 381 (2004) 308. https://doi.org/10.1016/j.msea.2004.04.057.

    Article  CAS  Google Scholar 

  7. Yang H, Huang L, and Zhan M, Comput Mater Sci 47 (2010) 857. https://doi.org/10.1016/j.commatsci.2009.11.014.

    Article  CAS  Google Scholar 

  8. Huang C H, Hung C H, Hung J C, and Lin C R, Int J Adv Manuf Technol 56 (2011) 1039. https://doi.org/10.1007/s00170-011-3247-0.

    Article  Google Scholar 

  9. Ghandehari F M R, Mazinani M, and Ebrahimi G R, Mater Sci Eng A 606 (2014) 214. https://doi.org/10.1016/j.msea.2014.03.104.

  10. Bohlen J, Yi S B, Swiostek J, Letzig D, Brokmeier H G, and Kainer K U, Scripta Materialia 53 (2005) 259. https://doi.org/10.1016/j.scriptamat.2005.03.036.

    Article  CAS  Google Scholar 

  11. Cao Z, Wang F, Wan Q, Zhang Z, Jin L, and Dong J, Mater Des 67 (2015) 64. https://doi.org/10.1016/j.matdes.2014.11.016.

    Article  CAS  Google Scholar 

  12. Parsa M H, Pazooki A M A, and Ahmadabadi N M, Int J Adv Manuf Technol 42 (2009) 463. https://doi.org/10.1007/s00170-008-1624-0.

  13. Wong C C, Dean T A, and Lin J, J Mater Process Technol 153-154 (2004) 60. https://doi.org/10.1016/j.jmatprotec.2004.04.102.

    Article  Google Scholar 

  14. Mohebbi M S, and Akbarzadeh A, J Mater Process Technol, 210 (2010) 389. https://doi.org/10.1016/j.jmatprotec.2009.09.028.

    Article  CAS  Google Scholar 

  15. Haghshenas M, Jhaver M, Klassen R J, and Wood J T, Mater Des 32 (2011) 3629. https://doi.org/10.1016/j.matdes.2011.02.014.

    Article  CAS  Google Scholar 

  16. Zhang Y, Wang F, Dong J, Jin L, Liu C, and Ding W J, Mater Sci Technol 34 (2018) 1091. https://doi.org/10.1016/j.jmst.2017.12.007.

  17. Fong K S, Wong C C, Atsushi D, Key Eng Mater, Trans Tech Publ 447 (2010) 427. https://doi.org/10.4028/www.scientific.net/KEM.447-448.427

  18. Kwak T Y, Lim H K, and Kim W J, J Alloys Comp 658 (2016) 157. https://doi.org/10.1016/j.jallcom.2015.10.193

    Article  CAS  Google Scholar 

  19. Mohebbi M S, and Rahimi Pour M, Int J Adv Manuf Technol 103 (2019) 377. https://doi.org/10.1007/s00170-019-03528-1.

  20. Roy M J, Klassen R J, and Wood, J T J Mater Process Technol 209 (2009) 1018. https://doi.org/10.1016/j.jmatprotec.2008.03.030.

    Article  CAS  Google Scholar 

  21. Rajan K M, and Narasimhan K Pract Fail Anal 1 (2001) 69. https://doi.org/10.1007/bf02715366

    Article  Google Scholar 

  22. Zecevic M, Beyerlein I J, and Knezevic M, J Mech Phys Solids 111 (2018) 290. https://doi.org/10.1016/j.jmps.2017.11.004.

    Article  CAS  Google Scholar 

  23. Al-Samman T, and Gottstein G, Mater Sci Eng A, 490 (2008) 411. https://doi.org/10.1016/j.msea.2008.02.004.

    Article  CAS  Google Scholar 

  24. Doege E, and Kurz G, CIRP Ann 50 (2001) 177. https://doi.org/10.1016/S0007-8506(07)62099-X.

    Article  Google Scholar 

  25. Xu Y, Zhang S H, Li P, Yang K, Shan D B, and Lu Y, J Mater Process Technol 113 (2001) 710. https://doi.org/10.1016/S0924-0136(01)00644-6.

    Article  Google Scholar 

  26. Kalpakcioglu S, J Eng Ind 86 (1964) 49.

    Article  Google Scholar 

  27. Hosford W F, and Caddell R M, Metal Forming: Mechanics and Metallurgy Cambridge University Press (2011).

  28. Zhan M, Yang H, Zhang J H, Xu Y L, and Ma F, J Mater Process Technol, 187 (2007) 486. https://doi.org/10.1016/j.jmatprotec.2006.11.114.

    Article  CAS  Google Scholar 

  29. Ma Z, J Mater Process Technol 37 (1993) 217. https://doi.org/10.1016/0924-0136(93)90092-K.

    Article  Google Scholar 

  30. Atik K, and Efe M, Mater Sci Eng A 725 (2018) 267. https://doi.org/10.1016/j.msea.2018.03.121.

    Article  CAS  Google Scholar 

  31. Klimanek P, and Pötzsch A, Mater Sci Eng A 324 (2002) 145. https://doi.org/10.1016/S0921-5093(01)01297-7.

    Article  Google Scholar 

  32. Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, Elsevier (2012).

  33. Li L L, Cai Z Y, Xu H Q, Wang M, and Yu J, Int J Adv Manuf Technol 75 (2014) 897. https://doi.org/10.1007/s00170-014-6186-8.

    Article  Google Scholar 

  34. Murata M, Kuboki T, and Murai T, J Mater Process Technol 162 (2005) 540.

    Article  Google Scholar 

  35. Fata A, Faraji G, Mashhadi M M, and Tavakkoli V, Arch Metall Mater 62 (2017) 159. https://doi.org/10.1515/amm-2017-0022.

    Article  CAS  Google Scholar 

  36. Chaudry U M, Kim T H, Kim Y S, Hamad K, Ko Y G, and Kim J G, Mater Sci Eng A 762 (2019) 138085. https://doi.org/10.1016/j.msea.2019.138085.

    Article  CAS  Google Scholar 

  37. Mohebbi M, and Akbarzadeh A, Mater Sci Eng A 528 (2010) 180. https://doi.org/10.1016/j.msea.2010.08.081.

    Article  CAS  Google Scholar 

  38. Chang C I, Lee C J, and Huang J C, Scripta Materialia 51 (2004) 509. https://doi.org/10.1016/j.scriptamat.2004.05.043.

    Article  CAS  Google Scholar 

  39. Ammouri A, Kridli G, Ayoub G, and Hamade R F, J Mater Process Technol 222 (2015) 301. https://doi.org/10.1016/j.jmatprotec.2015.02.037.

    Article  CAS  Google Scholar 

  40. Maksoud I A, Ahmed H, and Rödel J, Mater Sci Eng A 504 (2009) 40. https://doi.org/10.1016/j.msea.2008.10.033.

    Article  CAS  Google Scholar 

  41. Tavakkoli V, Afrasiab M, Faraji G, and Mashhadi M M, Mater Sci Eng A 625 (2015) 50. https://doi.org/10.1016/j.msea.2014.11.085.

    Article  CAS  Google Scholar 

  42. Barnett M R, Nave M D, and Bettles C J, Mater Sci Eng A 386 (2004) 205. https://doi.org/10.1016/j.msea.2004.07.030.

    Article  CAS  Google Scholar 

  43. Nave M D, and Barnett M R, Scripta Materialia 51 (2004) 881. https://doi.org/10.1016/j.scriptamat.2004.07.002.

    Article  CAS  Google Scholar 

  44. Ma Q, El Kadiri H, Oppedal A L, Baird J C, Li B, Horstemeyer M F, and Vogel S C, Int J Plast 29 (2012) 60. https://doi.org/10.1016/j.ijplas.2011.08.001.

    Article  CAS  Google Scholar 

  45. Brown D W, Agnew S R, Abeln S P, Blumenthal W R, Bourke M A, Mataya M C, Tomé C, and Vogel S C, Mater Sci Eng A 399 (2005) 1. https://doi.org/10.1016/j.msea.2005.02.016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Fata or Mohammad Sadegh Mohebbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fata, A., Tavakkoli, V. & Mohebbi, M.S. Investigation of Flow-Formability of an AZ31 Magnesium Alloy. Trans Indian Inst Met 73, 2601–2612 (2020). https://doi.org/10.1007/s12666-020-02047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02047-y

Keywords

Navigation