Skip to main content
Log in

Phase Evolution and Thermal Stability of Low-Density MgAlSiCrFe High-Entropy Alloy Processed Through Mechanical Alloying

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An equiatomic MgAlSiCrFe high-entropy alloy was synthesized by mechanical alloying. The alloying behavior, phase evolution, phase composition and thermal stability of as-milled nanostructured powders of HEA were ascertained through X-ray diffraction and transmission electron microscopy, scanning electron microscopy and differential scanning calorimetry (DSC), respectively. The milling of elemental powders for 60 h led to the formation of HEA with a major BCC phase having lattice parameter of 0.2887 ± 0.005 nm very close to that of the α-Fe and a minor fraction of undissolved Si. The nanocrystalline HEA powder formed during milling has crystallite size of 19 ± 0.8 nm. The STEM–EDS mapping of these milled powders confirms the homogenous elemental distribution after 60 h of mechanical alloying. The DSC thermogram of 60 h milled HEA powder shows the thermal stability of milled powder up to ~ 400 °C. The exothermic heating events observed in the DSC thermogram correspond to phase transformation of MgAlSiCrFe HEA powder, and it may be correlated with the phases observed through the ex situ XRD of HEA powders annealed at different temperatures up to 700 °C. After annealing the 60 h milled powder, various phases along with parent BCC phase have evolved, i.e., B2 type Al–Fe phase, FCC phases (Al–Mg solid solution), Cr5Si3, Mg2Si, Al13Fe4. Further, the experimental findings were correlated with various thermodynamic parameters for understanding the phase evolution and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murty B S, Yeh J W, and Ranganathan S, High-Entropy Alloys, 1st edition, Elseveir Inc, New York (2014).

    Google Scholar 

  2. Shechtman D, Blech I, Gratias D, and Cahn J W, Phys Rev Lett 53 (1984) 1951.

    Article  CAS  Google Scholar 

  3. Inoue A, Acta Mater 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6.

    Article  CAS  Google Scholar 

  4. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A 375–377 (2004) 213. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  5. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299. https://doi.org/10.1002/adem.200300567.

  6. Mukhopadhyay N K, Curr Sci 109 (2015) 665. http://www.jstor.org/stable/24905720.

  7. Gao M C, JOM 67 (2015) 2251. https://doi.org/10.1007/s11837-015-1609-z.

    Article  Google Scholar 

  8. Miracle D B, Mater Sci Technol 31 (2015) 1142. https://doi.org/10.1179/1743284714Y.0000000749.

    Article  CAS  Google Scholar 

  9. Miracle D B, and Senkov O N, Acta Mater 122 (2017) 448. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  10. Miracle D B, Nat Commun 10 (2019) 1. https://doi.org/10.1038/s41467-019-09700-1.

    Article  CAS  Google Scholar 

  11. Senkov O N, and Miracle D B, J Alloys Compd 658 (2016) 603. https://doi.org/10.1016/j.jallcom.2015.10.279.

    Article  CAS  Google Scholar 

  12. Gorsse S, Miracle D B, and Senkov O N, Acta Mater 135 (2017) 177. https://doi.org/10.1016/j.actamat.2017.06.027.

    Article  CAS  Google Scholar 

  13. Steurer W, Mater Charact (2020) 124658. https://doi.org/10.1016/j.colsurfa.2020.124658.

  14. Shivam V, Basu J, Shadangi Y, Singh M K, and Mukhopadhyay N K, J Alloys Compd 757 (2018). https://doi.org/10.1016/j.jallcom.2018.05.057.

  15. Shivam V, Basu J, Pandey V K, Shadangi Y, and Mukhopadhyay N K, Adv Powder Technol 29 (2018). https://doi.org/10.1016/j.apt.2018.06.006.

  16. Shivam V, Shadangi Y, Basu J, and Mukhopadhyay N K, J Mater Res 34 (2019) 787. https://doi.org/10.1557/jmr.2019.5.

    Article  CAS  Google Scholar 

  17. Yadav T P, Mukhopadhyay S, Mishra S S, Mukhopadhyay N K, and Srivastava O N, Philos Mag Lett 0839 (2018) 1. https://doi.org/10.1080/09500839.2017.1418539.

    Article  CAS  Google Scholar 

  18. Mohanty S, Gurao N P, Padaikathan P, and Biswas K, Mater Charact 129 (2017) 127.

  19. Mohanty S, Gurao N P, and Biswas K, Mater Sci Eng A 617 (2014) 211. https://doi.org/10.1016/j.msea.2014.08.046.

    Article  CAS  Google Scholar 

  20. Shivam V, Sanjana V, and Mukhopadhyay N K, Trans Indian Inst Met 73 (2020) 821. https://doi.org/10.1007/s12666-020-01892-1.

    Article  CAS  Google Scholar 

  21. Jain H, Shadangi Y, Shivam V, Chakravarty D, Kumar D, Shadangi Y, Shivam V, Chakravarty D, Mukhopadhyay N K, and Kumar D, J. Pre-Proof (2020).

  22. Wang Z, Wu M, Cai Z, Chen S, and Baker I, Intermetallics 75 (2016) 79. https://doi.org/10.1016/j.intermet.2016.06.001.

    Article  CAS  Google Scholar 

  23. Shaysultanov D G, Salishchev G A, Ivanisenko Y V, Zherebtsov S V, Tikhonovsky M A, and Stepanov N D, J Alloys Compd 705 (2017) 756. https://doi.org/10.1016/j.jallcom.2017.02.211.

    Article  CAS  Google Scholar 

  24. Stepanov N D, Shaysultanov D G, Yurchenko N Y, Zherebtsov S V, Ladygin A N, Salishchev G A, and Tikhonovsky M A, Mater Sci Eng A 636 (2015) 188. https://doi.org/10.1016/j.msea.2015.03.097.

    Article  CAS  Google Scholar 

  25. Deng Y, Tasan C C, Pradeep K G, Springer H, Kostka A, and Raabe A, Acta Mater 94 (2015) 124. https://doi.org/10.1016/j.actamat.2015.04.014.

    Article  CAS  Google Scholar 

  26. Qiu Y, Hu Y J, Taylor A, Styles M J, Marceau R K W, Ceguerra A V, Gibson M A, Liu Z K, Fraser H L, and Birbilis N, Acta Mater 123 (2017) 115. https://doi.org/10.1016/j.actamat.2016.10.037.

    Article  CAS  Google Scholar 

  27. Youssef K M, Zaddach A J, Niu C, Irving D L, and Koch C C, Mater Res Lett 3 (2014) 95. https://doi.org/10.1080/21663831.2014.985855.

    Article  CAS  Google Scholar 

  28. Hammond V H, Atwater M A, Darling K A, Nguyen H Q, and Kecskes L J, JOM 66 (2014) 2021. https://doi.org/10.1007/s11837-014-1113-x.

    Article  CAS  Google Scholar 

  29. Yang X, Chen S Y, Cotton J D, and Zhang Y, JOM 66 (2014) 2009. https://doi.org/10.1007/s11837-014-1059-z.

    Article  CAS  Google Scholar 

  30. Sanchez J M, Vicario I, Albizuri J, Guraya T, and Garcia J C, J Mater Res Technol 8 (2019) 795. https://doi.org/10.1016/j.jmrt.2018.06.010.

    Article  CAS  Google Scholar 

  31. Feng R, Gao M C, Zhang C, Guo W, Poplawsky J D, Zhang F, Hawk J A, Neuefeind J C, Ren Y, and Liaw P K, Acta Mater 146 (2018) 280. https://doi.org/10.1016/j.actamat.2017.12.061.

    Article  CAS  Google Scholar 

  32. Raabe D, Tasan C C, Springer H, and Bausch M, Steel Res Int 86 (2015) 1127. https://doi.org/10.1002/srin.201500133.

    Article  CAS  Google Scholar 

  33. Chen Y L, Tsai C W, Juan C C, Chuang M H, Yeh J W, Chin T S, and Chen S K, J Alloys Compd 506 (2010) 210. https://doi.org/10.1016/j.jallcom.2010.06.179.

    Article  CAS  Google Scholar 

  34. Kokai T, Yachu Y, Chienchang J, Tsungshune C, Chewei T, and Jienwei Y E H, Technol Sci 61 (2018) 184.

  35. Murty B S, and Ranganathan S, Int Mater Rev 43 (1998) 101. https://doi.org/10.1179/095066098790105654.

    Article  CAS  Google Scholar 

  36. Shadangi Y, Shivam V, Singh M K, Chattopadhyay K, Basu J, and Mukhopadhyay N K, J Alloys Compd 797 (2019) 1280. https://doi.org/10.1016/J.JALLCOM.2019.05.128.

    Article  CAS  Google Scholar 

  37. Shadangi Y, Sharma S, Shivam V, Basu J, Chattopadhyay K, Majumdar B, and Mukhopadhyay N K, J Alloys Compd (2020) 154258. https://doi.org/10.1016/J.JALLCOM.2020.154258.

  38. Shadangi Y, Shivam V, Varalakshmi S, Basu J, Majumdar B, Mukhopadhyay N K, Shivam V, Varalakshmi S, Basu J, Chattopadhyay K, and Mukhopadhyay N K, J. Pre-Proof (2020).

  39. Basariya M R, Roy R K, Pramanick A K, Srivastava V C, and Mukhopadhyay N K, Mater Sci Eng A 638 (2015) 282. https://doi.org/10.1016/j.msea.2015.04.076.

    Article  CAS  Google Scholar 

  40. Williamson G K, and Hall W H, Acta Metall 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6.

    Article  CAS  Google Scholar 

  41. Yang X, and Zhang Y, Mater Chem Phys (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021.

    Article  Google Scholar 

  42. Miedema A R, de Châtel P F, and de Boer F R, Phys B + C 100 (1980) 1. https://doi.org/10.1016/0378-4363(80)90054-6.

  43. Guo S C T L, Prog Nat Sci Mater Int 21 (2011) 433.

    Article  Google Scholar 

  44. Chen Y L, Hu Y H, Hsieh C A, Yeh J W, and Chen S K, J Alloys Compd 481 (2009) 768. https://doi.org/10.1016/j.jallcom.2009.03.087.

    Article  CAS  Google Scholar 

  45. Maulik O, Kumar D, Kumar S, Fabijanic D M, and Kumar V, Intermetallics 77 (2016) 46. https://doi.org/10.1016/j.intermet.2016.07.001.

  46. Maulik O, and Kumar V, Mater Charact 110 (2015) 116. https://doi.org/10.1016/j.matchar.2015.10.025.

  47. Li R, Gao J-C, and Fan K, Mater Sci Forum 686 (2011) 235. https://doi.org/10.4028/www.scientific.net/MSF.686.235.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Profs. B.N. Sarma, Sandip Chatterjee, K.G. Prashanth, and Dr. Joysurya Basu and Mr. Vikas Shivam for stimulating discussion. Authors would also like to acknowledge the support of Central Instrument Facility, IIT (BHU), and Dr Rampada Manna, Coordinator, Advanced Research Centre for Iron and Steel for extending necessary characterization facility. Authors wish to thank the Department of Science and Technology (DST) for infrastructural support under the scheme “Funds for Improvement of S&T Infrastructure (FIST)” Level-II. Authors thankfully acknowledges technical help of Mr. Lalit Kumar Singh and Girish Sahoo for TEM and SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Shadangi, Y. & Mukhopadhyay, N.K. Phase Evolution and Thermal Stability of Low-Density MgAlSiCrFe High-Entropy Alloy Processed Through Mechanical Alloying. Trans Indian Inst Met 73, 2377–2386 (2020). https://doi.org/10.1007/s12666-020-02039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02039-y

Keywords

Navigation