Skip to main content
Log in

The Effect of Lamellar and Globular α-Phase on Mechanical Behavior of Strongly Textured Ti–6Al–4V alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the effect of lamellar and globular α-phase on mechanical properties of strongly textured Ti–6Al–4V alloy was investigated. The strong transverse texture was developed in Ti–6Al–4V alloy via α + β rolling at 950 °C. In the following, lamellar and equiaxed microstructures have been separately promoted in the Ti–6Al–4V alloy during annealing at β- and α + β regions, respectively. According to EBSD analysis, it was revealed that deformation texture was not considerably changed during different annealing processes. Then, room temperature mechanical properties of the studied alloy including uniaxial tensile, compression and bending tests were evaluated. According to the tensile test, work hardening capacity was obtained as 1.10 and 0.64 for equiaxed and lamellar microstructures, respectively. Fracture limit curve revealed that equiaxed microstructure had more extent of homogeneous deformation in comparison with lamellar one. In addition, bending properties of the Ti–6Al–4V alloy were significantly improved as a result of equiaxed microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lütjering G, and Williams J C, Titanium, Springer, Berlin (2007), p 203.

    Google Scholar 

  2. Zhao B, Wang H, Qiao N, Wang C, and M. Hu, Mater Sci Eng C Mater Biol Appl70 (2017) 832.

    Article  CAS  Google Scholar 

  3. Morrissey R J, and Nicholas T, Int J Fatigue27 (2005) 1608.

    Article  CAS  Google Scholar 

  4. Barboza M, Perez E, Medeiros M, Reis D, Nono M, Neto F P, and Silva C, Mater Sci Eng A428 (2006) 319.

    Article  Google Scholar 

  5. Nayar P, Bohm E, Petrak M, Caley W, and Cahoon J, Can Metall55 (2016) 420.

    Article  CAS  Google Scholar 

  6. Cheng X, Li S, Murr L, Zhang Z, Hao Y, Yang R, Medina F, and Wicker R, J Mech Behav Biomed16 (2012) 153.

    Article  CAS  Google Scholar 

  7. Gupta R, Kumar V A, Mathew C, and Rao G S, Mater Sci Eng A662 (2016) 537.

    Article  CAS  Google Scholar 

  8. Ma X, Li F, Li J, Cao J, Li P, and Dong J, J Mater Eng Perform24 (2015) 3761.

    Article  CAS  Google Scholar 

  9. Matsumoto H, Yoneda H, Sato K, Kurosu S, Maire E, Fabregue D, Konno T J, and Chiba A, Mater Sci Eng A528 (2011) 1512.

    Article  Google Scholar 

  10. Ahmadian P, Abbasi S M, and Morakabati M, Mater Today Commun13 (2017) 332.

    Article  CAS  Google Scholar 

  11. Ahmadian P, Abbasi S M, and Morakabati M, Mater Today Commun14 (2018) 263.

    Article  CAS  Google Scholar 

  12. Ahmadian P, Morakabati M, and Abbasi S M, Int J Mater Res110 (2019) 543.

    Article  CAS  Google Scholar 

  13. Shi X, Zeng W, Sun Y, Han Y, Zhao Y, and Guo P, J Mater Eng Perform24 (2015) 1754.

    Article  CAS  Google Scholar 

  14. Murty S N, Nayan N, Kumar P, Narayanan P R, Sharma S, and George K M, Mater Sci Eng A589 (2014) 174.

    Article  CAS  Google Scholar 

  15. Jiang H T, Liu J X, Mi Z L, Zhao A M, and Bi Y J, Int J Min Met Mater19 (2012) 530.

    Article  CAS  Google Scholar 

  16. Chong Y, Bhattacharjee T, Park M H, Shibata A, and Tsuji N, Mater Sci Eng A730 (2018) 217.

    Article  CAS  Google Scholar 

  17. Welsch G, Boyer R, and Collings E, Material Properties Handbook: Titanium alloys, ASM international, Ohio (1993), p 483.

    Google Scholar 

  18. ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, (2016).

  19. ASTM E290-14, Standard Test Methods for Bend Testing of Material for Ductility, (2014).

  20. Chao Q, Hodgson P D, and Beladi H, Metall Mater Trans A47 (2016) 531.

    Article  CAS  Google Scholar 

  21. Lin P, Feng A, Yuan S, Li G, and Shen J, Mater Sci Eng A563 (2013) 16.

    Article  CAS  Google Scholar 

  22. Randle V, and Engler O, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, CRC press, Florida (2014), p 75.

    Google Scholar 

  23. Wang Y, and Huang J, Mater Chem Phys81 (2003) 11.

    Article  CAS  Google Scholar 

  24. Obasi G C, Variant selection and its effect on texture in Ti–6Al–4V alloy, Ph.D. thesis, University of Manchester, England (2011).

  25. Ding R, Guo Z, and Wilson A, Mater Sci Eng A327 (2002) 233.

    Article  Google Scholar 

  26. Hosford W F, and Caddell R M, Metal Forming Mechanics and Metallurgy, Cambridge University Press, Cambridge (2011), p 17.

    Book  Google Scholar 

  27. Dieter G E, Kuhn H A, and Semiatin S L, Handbook of Workability and Process Design, ASM International, Ohio (2003), p 45.

    Google Scholar 

  28. Kulkarni G, Hiwarkar V, Patil J, and Singh R, J Nanosci Nanotechnol Res 2 (2018) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peyman Ahmadian or Maryam Morakabati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, P., Morakabati, M. The Effect of Lamellar and Globular α-Phase on Mechanical Behavior of Strongly Textured Ti–6Al–4V alloy. Trans Indian Inst Met 73, 1301–1309 (2020). https://doi.org/10.1007/s12666-020-01957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01957-1

Keywords

Navigation