Skip to main content

Cyclic Oxidation Behavior of the Super Austenitic Stainless Steel 904L in Air at 500–650 °C


Cyclic oxidation behavior of the super austenitic stainless steel 904L was studied for 100 h over the intermediate temperature range from 500 to 650 °C in air. The oxidized surfaces and cross sections of the oxidized samples were examined by scanning electron microscope (SEM–EDS), X-ray diffractometer and electron probe micro analyzer. The weight gain was found to follow nearly parabolic rate law. At 500 and 550 °C, there was rapid weight gain up to the initial 5 h of exposure, whereas the rapid weight gain at 600 and 650 °C was up to 10 and 25 h of exposure, respectively. The weight gain was drastically reduced during the later stage of exposure. Since the formed scales were thin, strong peaks of austenite (γ)-matrix were observed in all the exposed samples. There was formation of thin layer of Cr2O3 on the specimens exposed at 500 and 550 °C. Also, there was heterogeneous formation of iron oxides in some regions. The exposure at higher temperatures of 600 and 650 °C led to the formation of different spinels of oxides such as FeCr2O4, NiCr2O4, FeNi2O4 and others, along with Cr2O3 and Fe2O3 oxides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Lepingle V, Louis G, Allué D, Lefebvre B, and Vandenberghe B, Corros Sci50 (2008) 1011.

    CAS  Article  Google Scholar 

  2. 2.

    Momeni A, and Dehghani K, Metall Mater Trans A42 (2011) 1925.

    CAS  Article  Google Scholar 

  3. 3.

    Wallwork G R, Rep Progress Phys39 (1976) 401.

    CAS  Article  Google Scholar 

  4. 4.

    Lai J K L, Shek C H, and Lo K H, Stainless Steels: An Introduction and Their Recent Developments, Bentham Science Publishers, Sharjah (2012).

    Google Scholar 

  5. 5.

    Calmunger M, On High-Temperature Behaviours of Heat Resistant Austenitic Alloys, Linköping University Electronic Press, Linköping, (2015).

    Book  Google Scholar 

  6. 6.

    Schade C T, Schaberl J W, and Lawley A, Int J Powder Metall44 (2008) 57.

    Google Scholar 

  7. 7.

    Sedriks A J, Int Met Rev27 (1982) 321.

    CAS  Article  Google Scholar 

  8. 8.

    Dillon C P, Corrosion Resistance of Stainless Steels, CRC Press, Boca Raton (1995).

    Google Scholar 

  9. 9.

    Sequeira C A C, Brito P S D, Antunes R M M, Neto R P C, and Rodrigues L F F T T G, in Conference on Materials in Oceanic Environment, Euromat’ 98, At Lisbon (1998), vol 1, p 631.

  10. 10.

    Cao Y, and Norell M, Oxid Met80 (2013) 479.

    CAS  Article  Google Scholar 

  11. 11.

    Allen G C, Harris S J, Jutson J A, and Dyke J M, Appl Surface Sci37 (1989) 111.

    CAS  Article  Google Scholar 

  12. 12.

    Lampimäki M, Lahtonen K, Jussila P, Hirsimäki M, and Valden M, J Electron Spectrosc Relat Phenom154 (2007) 69.

    Article  Google Scholar 

  13. 13.

    Ali-Löytty H, Jussila P, Hirsimäki M, and Valden M, Appl Surface Sci257 (2011) 7783.

    Article  Google Scholar 

  14. 14.

    Rothman S J, Nowicki L J, and Murch G E, J Phys F Met Phys10 (1980) 383.

    CAS  Article  Google Scholar 

  15. 15.

    Tan L, Yang Y, Allen T R, and Busby J T, in Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power SystemsWater Reactors, Springer, pp 1909–1922 (2011).

  16. 16.

    Million B, Růžičková J, and Vřešťál J, Mater Sci Eng72 (1985) 85.

    CAS  Article  Google Scholar 

  17. 17.

    Lobnig R E, Schmidt H P, Hennesen K, and Grabke H J, Oxid Met37 (1992) 81.

    CAS  Article  Google Scholar 

  18. 18.

    Basu S N, and Yurek G J, Oxid Met36 (1991) 281.

    CAS  Article  Google Scholar 

  19. 19.

    Birks N, Meier G H, and Pettit F S, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, (2006).

    Book  Google Scholar 

  20. 20.

    Intiso L, Johansson L-G, Canovic S, Bellini S, Svensson J-E, and Halvarsson M, Oxid Met77 (2012) 209.

    CAS  Google Scholar 

  21. 21.

    Zurek J, Yang S‐M, Lin D‐Y, Hüttel T, Singheiser L, and Quadakkers W J, Mater Corros66 (2015) 315.

    CAS  Google Scholar 

  22. 22.

    Rutkowski B, Gil A, Ratuszek W, Woźnik B, and Czyrska-Filemonowicz A, Inżynieria Materiałowa37 (2016) 223.

    Google Scholar 

  23. 23.

    Koech P K, and Wang C J, Oxid Met90 (2018) 713.

    Article  Google Scholar 

Download references


The authors are thankful to Prof. N V C Rao and Dr. Dinesh Pandit, Department of Geology, Institute of Science, B.H.U., Varanasi for providing EPMA facility.

Author information



Corresponding author

Correspondence to Manishkumar K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Kumar, S., Sinha, O.P. et al. Cyclic Oxidation Behavior of the Super Austenitic Stainless Steel 904L in Air at 500–650 °C. Trans Indian Inst Met 73, 1101–1108 (2020).

Download citation


  • Super austenitic 904L
  • Oxidation kinetics
  • XRD
  • EPMA analysis