Skip to main content
Log in

Damage Tolerance Capability of Retrogression and Re-aged 7010 Aluminum Alloy Under FALSTAFF Loading

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work deals with the damage tolerance characteristics of high strength aluminum alloy tempered in T6 and reversion condition. The fatigue experiments were carried out by applying a service simulating load spectrum, i.e., standard mini FALSTAFF loading. The crack propagation speed was found to be lower and the total crack propagation life was longer by 22% for reversion-treated alloy. The crack growth was also predicted to be using two parameter crack driving force approach. The fatigue data of these treated alloys under constant amplitude loading at various stress ratios were analyzed to obtain crack growth law. The predicted crack growth behavior was conservative and followed similar trend in both the alloys as observed in experiments. Predicted results of reversion-treated alloy also showed longer crack growth life. The modified microstructure after reversion treatment was attributed for the observed improvement in damage tolerance capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dursun T and Soutis C Mater. Des.56 (2014) 862.

    Article  CAS  Google Scholar 

  2. Schijve J Int. J. Fatigue31 (2009) 998.

    Article  Google Scholar 

  3. Puiggali M, Zielinski A, Olive J M, Renauld E, Desjardins D, and Cid M Corros. Sci.40 (1998) 805.

    Article  CAS  Google Scholar 

  4. Rout P K, Ghosh M M, and Ghosh K S Mater. Charact.104 (2015) 49.

    Article  CAS  Google Scholar 

  5. Bora C Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking, US3856584, (1974).

  6. Rout P K, Ghosh M M, and Ghosh K S Adv. Mater. Res.984-985 (2014) 529.

    Article  Google Scholar 

  7. Nandana M S, Udaya Bhat K, and Manjunatha C M J. Mater. Eng. Perform.27 (2018) 1628.

    Article  CAS  Google Scholar 

  8. Bray G H, Glazov M, Rioja R J, Li D, and Gangloff R P Int. J. Fatigue23 (2001) 265.

    Article  Google Scholar 

  9. Sharma V M J, Sree Kumar K, Nageswara Rao B, and Pathak S D Mater. Sci. Eng. A528 (2011) 4040.

    Article  Google Scholar 

  10. Chen Y, Weyland M, and Hutchinson C R Acta Mater.61 (2013) 5877.

    Article  CAS  Google Scholar 

  11. Carvalho A L de M and Martins J de P Mater. Res.21 (2018).

  12. Wang Y L, Pan Q L, Wei L L, Li B, and Wang Y Mater. Des.55 (2014) 857.

    Article  CAS  Google Scholar 

  13. Xia P, Liu Z, Bai S, Lu L, and Gao L Mater. Charact.118 (2016) 438.

    Article  CAS  Google Scholar 

  14. Heuler P and Klatschke H Int. J. Fatigue27 (2005) 974.

    Article  Google Scholar 

  15. ASTM E1049-85 Annu. B. ASTM Stand. West Conshohocken, PA85 1 (2011).

  16. Yang XR, Liu Z Y, Ying P Y, Li J L, Lin L H, and Zeng S M Trans. Nonferrous Met. Soc. China26 (2016) 1183.

    Article  CAS  Google Scholar 

  17. Nandana M S, Udaya Bhat K, and Manjunatha C M Fatigue Fract. Eng. Mater. Struct.42 (2018) 719.

    Google Scholar 

  18. Chen X, Liu Z, Lin M, Ning A, and Zeng S J. Mater. Eng. Perform.21 (2012) 2345.

    Article  CAS  Google Scholar 

  19. Pokorny P, Vojtek T, Nahlik L, and Hutar P Eng. Fract. Mech.185 (2017) 2.

    Article  Google Scholar 

  20. Desmukh M N, Pandey R K, and Mukhopadhyay A K Mater. Sci. Eng. A435-436 (2006) 318.

    Article  Google Scholar 

  21. Nandana M S, Udaya Bhat K, and Manjunatha C M ICAF 2019Structural Integrity in the Age of Additive Manufacturing (Springer International Publishing) (2020).

  22. Walker K ASTM STP 462, Am. Soc. Test. Mater. 1 (1970).

  23. Elber W Eng. Fract. Mech.2 (1970) 37.

    Article  Google Scholar 

  24. Li Y, Wang H, and Gong D Eng. Fract. Mech.96 (2012) 500.

    Article  Google Scholar 

  25. McClung R C Metall. Trans. A22 (1991) 1559.

    Article  Google Scholar 

  26. Dinda S and Kujawski D Eng. Fract. Mech.71 (2004) 1779.

    Article  Google Scholar 

  27. Sree P C R and Kujawski D A two-parameter fatigue crack growth correlation using ∆K and Kmax parameters p 11 (2014).

  28. Kujawski D Int. J. Fatigue23 (2001) S239.

    Article  Google Scholar 

  29. Newman J Methods Model. Predict. Fatigue Crack Growth under Random Loading, STP748-EB, Chang. J. Hudson, C., Ed., ASTM Int. West Conshohocken, PA748 (1981) 53.

Download references

Acknowledgements

A sincere gratitude is extended for the support provided by the chairman, CSIR-NAL and NITK for providing equipment facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandna, M.S., Bhat, K.U. & Manjunatha, C.M. Damage Tolerance Capability of Retrogression and Re-aged 7010 Aluminum Alloy Under FALSTAFF Loading. Trans Indian Inst Met 73, 1073–1080 (2020). https://doi.org/10.1007/s12666-020-01946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01946-4

Keywords

Navigation