Skip to main content
Log in

Dendrite Morphological Analysis on SMA, GMA, and PGMA Welding of Dissimilar 304LN Austenitic Stainless Steel and Micro-alloyed Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Dissimilar metal welding between the austenitic stainless steel and micro-alloyed steel was widely used in high-temperature applications in power stations and petrochemical plants. In the current research, the dissimilar metals between austenitic stainless steel and micro-alloyed steel have been joined by shielded metal arc welding (SMA), gas metal arc welding (GMA), and pulse gas metal arc welding (PGMA) processes. Welded samples of the aforementioned processes were subjected to comparative studies pertaining to the dendrite morphological characteristics. The study reveals that the process parameters affect the growth of dendrite arm because of the variation in the coefficient of thermal conductivity, expansion, and metallurgical incompatibility of the metals. In the PGMA welding process, the dendrite length decreases, while its width increases in all the locations of the weld by varying dimensionless factors ϕ (0.05, 0.15, and 0.25) and keeping its heat input as constant (Ω—11.2 kJ/cm). Among the welded joints, the PGMA weld joint comparatively exhibit shorter length (20 µm) and width (4 µm) of dendrite arm than the welded joints of the GMA and SMA processes. The change in the dendrite dimension is observed to be due to the variation in the dimensionless factor ϕ and the quantity of heat transfer to the weld (QT). The studies have been systematically planned in order to gain advanced scientific knowledge to establish superior technique for multi-pass PGMA welding of thick section of austenitic stainless steel to micro-alloy steel with respect to that used with conventional welding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Yufeng S, Sili F, and Changwei X, Res Phys11 (2018) 853.

  2. Huang M L, and Wang L, Metall Mat Trans A29A (1982) 3037.

  3. Marshall W, An assessment of integrity of PWR pressure vessels, second report by a study group under the chairmanship of, United Kingdom Atomic Energy Authority, 14 (1982) (Section-5).

  4. Singh D K, Sahoo G, Basu R, Sharma V, and Mohtadi-Bonab M A, J Manuf Process36 (2018) 281.

    Article  Google Scholar 

  5. Rajamurugan G, Dinesh D, and Ramakrishnan A, Int J Mech Prod Eng Res Dev8 (2018) 1641.

    Google Scholar 

  6. Lundin C D, Weld Res Suppl61 (1982) 58.

    Google Scholar 

  7. Faber G, and Gooch T, Weld World20 (1982) 88.

    Google Scholar 

  8. Castro R J, and de Cadenet J, Welding Metallurgy of stainless steel and Heat-Resisting Steel, Cambridge University Press, Cambridge (1974) p 158.

    Google Scholar 

  9. Gauzzi F, and Missori S, J Mater Sci23 (1988) 782.

    Article  CAS  Google Scholar 

  10. Sadeghian M, Shamanian M, and Shafyei A, Mater Des60 (2014) 678.

    Article  CAS  Google Scholar 

  11. Hajiannia I, Shamanian M, and Kasiri M, Mater Des50 (2013) 566.

    Article  CAS  Google Scholar 

  12. Cam G, Yeni C, Erim S, Ventzke V, and Kocak M, SciTechnol Weld Joint3 (1998) 177.

    Article  CAS  Google Scholar 

  13. Rossini M, Spena P R, Cortese L, Matteis P, and Firrao D, Mater Sci Eng A628 (2015) 288.

    Article  CAS  Google Scholar 

  14. Hernandez B V H, Kuntz M L, Khan M I, and Zhou Y, SciTechnol Weld Join13 (2008) 769.

    Article  Google Scholar 

  15. Pouranvari M, Mousavizadeh S M, Marashi S P H, Goodarzi M, and Ghorbani M, Mater Des32 (2011) 1390.

    Article  CAS  Google Scholar 

  16. American Welding Society, Metals and Their Weldability. Welding Handbook, Section IV (1972) 67.37.

  17. David S A, and Vitek J M, Int Mater Rev34 (1989) 213.

    Article  CAS  Google Scholar 

  18. Kou S, Sun D, Metall Mater Trans A16 (1985) 203.

    Article  Google Scholar 

  19. Arora A, Roy G G, DebRoy T, Scr Mater60 (2009) 68.

    Article  CAS  Google Scholar 

  20. Lienert T J, Burgardt P, Harada K L, Forsyth R T, and DebRoy T, Scr Mater71 (2014) 37.

    Article  CAS  Google Scholar 

  21. Mishra S, Lienert T, Johnson M, DebRoy T, ActaMater56 (2008) 2133.

    Article  CAS  Google Scholar 

  22. Lu S P, Fujii H, and Nogi K, Scr Mater51 (2004) 271.

    Article  CAS  Google Scholar 

  23. Ghosh P K, Goyal V K, Dhiman H K, and Kumar M, Sci Technol Weld Join11 (2006) 232.

    Article  CAS  Google Scholar 

  24. Ferraresi V A, Figueiredo K M, Ong H T, J Brazilian Soc Mech Sci EnggXXV (2003) 229.

  25. Joseph A, Harwig D, Farson D F, and Richardson R, Sci Technol Weld Join8 (2003) 400.

    Article  Google Scholar 

  26. Zhang Y M, Liguo E, and Kovacevic R, Weld J (1998) 458s.

  27. Gupta P C, Ghosh P K, and Vissa S, Int Conf Weld Technol UOR (1998) 171.

    Google Scholar 

  28. Ghosh P K, and Sharma V, Mater Trans JIM32 (1991) 145.

    Article  CAS  Google Scholar 

  29. Ghosh P K, Gupta P C, Ghosh P K, Gupta S R, and Jain N K, Indian Weld J (1989) 550.

  30. Ghosh P K, and Dorn L, Int J Join Mater5 (1993) 143.

  31. Ghosh P K, Int J Join Mater8 (1996) 157.

    Google Scholar 

  32. Rajamurugan G, Dinesh D, and Ramakrishnan A, Int J Mech Prod Eng Res Dev8 (2018) 1641. Rajamurugan G, and Ghosh P K, Asian J Res Soc Sci Human 6 (2016) 267. https://doi.org/10.5958/2249-7315.2016.00395.6.

  33. American Welding Society, Welding Handbook, Section IV, Sixth Edition (1972) p 67.37.

    Google Scholar 

  34. Goyal V K, Ghosh P K, and Saini J S, Metall Mater Trans A38 (2007) 1794.

  35. Rajamurugan G, and Ghosh P K, Asian J Res Soc Sci Human6 (2016) 277. https://doi.org/10.5958/2249-7315.2016.00396.8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the Board of Research in Nuclear Sciences (BRNS) for the material support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajamurugan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamurugan, G., Ghosh, P.K., Prabu, K. et al. Dendrite Morphological Analysis on SMA, GMA, and PGMA Welding of Dissimilar 304LN Austenitic Stainless Steel and Micro-alloyed Steel. Trans Indian Inst Met 73, 595–611 (2020). https://doi.org/10.1007/s12666-020-01871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01871-6

Keywords

Navigation