Skip to main content
Log in

Investigation of Production and Abrasive Wear Behavior of Functionally Graded TiB2/Al and TiB2/Al–4Cu Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, it is aimed to investigate the production and abrasive wear properties of functionally graded TiB2/Al and TiB2/Al–4Cu composites. Using in situ technique, titanium di-boride (TiB2) particles are being spontaneously formed in liquid matrix, resulting in a “Al(l) + TiB2(S)” semisolid at 900 °C. The semisolid solidifies under a centrifugal force at 1500 rpm rotation speed in a steel mold to produce functionally graded composites. The properties of composites such as density, abrasive wear, hardness and microstructure were examined by dividing into four zones from the outside to the inside of the composite. Volume loss of composites were examined by using L16(4124) orthogonal design, considering some factors such as matrix type of composites, region of composites, abrasive particle size, sliding speed and sliding load according to Taguchi method. The results showed that both TiB2/Al and TiB2/Al–Cu composites had two regions: the TiB2-reinforced and non-reinforced regions. It was determined that the volume loss increased with increasing load, speed and abrasive particle size and decreased with increasing TiB2 particles reinforcement ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prasad S V, and Asthana R, Tribol Lett17 (2004) 445–453.

    Article  CAS  Google Scholar 

  2. Rohatgi P, and Paper SA, Cast Metal Matrix Composites: Past, Present and Future 133 (2001) 1.

    Google Scholar 

  3. Sharma P, Khanduja D, and Sharma S, J Reinf Plast Compos33 (2014) 2192.

    Article  Google Scholar 

  4. Daniel BSS, Murthy VSR, and Murty GS, J Mater Process Technol68 (1997) 132–155.

    Article  Google Scholar 

  5. Tjong SC, and Ma ZY, Mater Sci Eng R Rep29 (2000) 49.

    Article  Google Scholar 

  6. Pramod SL, Bakshi SR, and Murty BS, J Mater Eng Perform [Internet]24 (2015) 2185. http://dx.doi.org/10.1007/s11665-015-1424-2.

    Article  CAS  Google Scholar 

  7. U MAT. Practicalization of cast metal matrix composites ž MMCCs/ (2001).

  8. Rosso M, J Mater Process Technol175 (2006) 364.

    Article  CAS  Google Scholar 

  9. Naebe M, and Shirvanimoghaddam K, Appl Mater Today [Internet]. 5 (2016) 223. http://dx.doi.org/10.1016/j.apmt.2016.10.001.

    Article  Google Scholar 

  10. Singh R, Bhavar V, and Kattire P, et al., IOP Conf Ser Mater Sci Eng229 (2017).

    Google Scholar 

  11. Kumar S, Chakraborty M, and Subramanya Sarma V, et al., Wear265 (2008) 134.

    Article  CAS  Google Scholar 

  12. Wang X, Brydson R, and Jha A, et al., J Microsc196 (1999) 137.

    Article  CAS  Google Scholar 

  13. Suresh S, and Moorthi NSV, Procedia Eng38 (2012) 89.

    Article  CAS  Google Scholar 

  14. Ramesh CS, Ahamed A, and Channabasappa BH, et al., Mater Des31 (2010) 2230.

    Article  CAS  Google Scholar 

  15. Christy TV, Murugan N, and Kumar S, J Miner Mater Charact Eng [Internet]09 (2010) 57.

    Google Scholar 

  16. Sasikumar S, Ramkumar KR, and Iniyan S, et al., Int J Innov Res Sci Eng Technol3 (2014) 1229.

    Google Scholar 

  17. Sreenivasan A, Vizhianb SP, and Shivakumarc ND, et al., Lat Am J Solids Struct8 (2011) 1.

    Article  Google Scholar 

  18. Krishnamurthy K, Ashebre M, and Venkatesh J, et al., J Miner Mater Charact Eng05 (2017) 74.

    CAS  Google Scholar 

  19. Kumar S, Sarma VS, and Murty BS, Mater Sci Eng A465 (2007) 160.

    Article  Google Scholar 

  20. Forster MF, Hamilton RW, and Dashwood RJ, et al., Mater Sci Technol19 (2003) 1215.

    Article  CAS  Google Scholar 

  21. Kumar S, Subramaniya Sarma V, and Murty BS, Metall Mater Trans A Phys Metall Mater Sci41 (2010) 242.

    Article  Google Scholar 

  22. Savaş O, and Kayikci R, J Alloys Compd580 (2013) 232.

    Article  Google Scholar 

  23. Aydin Z, Savaş, and Parlak A, et al., Acta Phys Pol A129 (2016) 617.

    Article  CAS  Google Scholar 

  24. Radhika N, and Raghu R, Trans Indian Inst Met71 (2018) 715.

    Article  CAS  Google Scholar 

  25. Koksal S, Ficici F, and Kayikci R, et al., Mater Des [Internet]42 (2012) 124. http://dx.doi.org/10.1016/j.matdes.2012.05.048.

    Article  CAS  Google Scholar 

  26. Auradi V, and Kori SA, J Alloys Compd453 (2008) 147.

    Article  CAS  Google Scholar 

  27. Emamy M, Mahta M, and Rasizadeh J, Compos Sci Technol66 (2006) 1063.

    Article  CAS  Google Scholar 

  28. Ramesh CS, Pramod S, and Keshavamurthy R, Mater Sci Eng A [Internet]528 (2011) 4125. http://dx.doi.org/10.1016/j.msea.2011.02.024.

    Article  CAS  Google Scholar 

  29. Method ST, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus 1 (2000).

  30. Ross PJ, Taguchi Techniques for Quality Engineering, Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. McGraw-Hill Inc., New York (1988).

    Google Scholar 

  31. Lochner R H and Matar J E (1990) Designing for Quality: An Introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design, Springer, Netherlands.

    Google Scholar 

  32. Lakshmi S, Lu L and Gupta M J Mater Process Technol73 (1998) 160.

    Article  Google Scholar 

  33. Lu L, Lai MO and Chen FL, Acta Mater45 (1997) 4297.

    Article  CAS  Google Scholar 

  34. Tee K L, Lu L and Lai M O, Compos Struct47 (2000) 589.

    Article  Google Scholar 

  35. Pujar A M and Kulkarni C, Mater Energy Environ Eng (2017) 13.

  36. Tee K L, Lu L and Lai MO, Mater Sci Technol 17:2 (2010) 201–206.

    Article  Google Scholar 

  37. Ozdin K, J Mater Process Technol183 (2007) 301.

    Article  Google Scholar 

  38. Radhika N and Raghu R, Tribol Online11 (2016) 487.

    Article  Google Scholar 

  39. Ko M, Compos Part A Appl Sci Manuf37 (2006) 457–464.

    Article  Google Scholar 

  40. Ficici F, Ind Lubr Tribol68 (2016) 632.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Savaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaş, Ö. Investigation of Production and Abrasive Wear Behavior of Functionally Graded TiB2/Al and TiB2/Al–4Cu Composites. Trans Indian Inst Met 73, 543–553 (2020). https://doi.org/10.1007/s12666-020-01870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01870-7

Keywords

Navigation