Skip to main content
Log in

Effects of T4 and T6 Heat Treatments on the Wear Behaviour of WC-Reinforced Mg Alloy Matrix Composite

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Collective outcomes of WC particle reinforcement and heat treatment on the dry sliding wear rate of AZ91 magnesium metal matrix composite have been presented. The vacuum-assisted semi-solid stir casting method was employed to fabricate the composites. Wear study was conducted on the specimens using a pin-on-disc tribometer with EN8 steel as a counter material. The experiments were designed using Taguchi L27 array, with control factors viz. applied load (20, 40 and 60 N), sliding speed (1, 2 and 3 m/s), heat treatment (no treatment, T4 and T6) and WC wt% (0, 1.5 and 3). Energy-dispersive X-ray spectroscopy and scanning electron microscopy analyses were performed to study the surface of the tested specimens. T6-treated AZ91/3.0WC composite showed 63% enhanced resistance to wear due to the presence of β-phase (Mg17Al12) precipitation during the heat treatment process and WC reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu Z, Ahmad R, Yin B, Sandlöbes S, and Curtin W A, Science (2018). https://doi.org/10.1126/science.aap8716.

    Article  Google Scholar 

  2. Joost W J, and Krajewski P E, Scr Mater (2017). https://doi.org/10.1016/j.scriptamat.2016.07.035.

    Article  Google Scholar 

  3. Ren L, Fan L, Zhou M, Guo Y, Zhang Y, Boehlert C J, and Quan G, Int J Lightweight Mater Manuf (2018). https://doi.org/10.1016/j.ijlmm.2018.05.002.

    Article  Google Scholar 

  4. Luo A A, J Magn Alloys (2013). https://doi.org/10.1016/j.jma.2013.02.002.

    Article  Google Scholar 

  5. Chen T J, Ma Y, Li B, Li Y D, and Hao Y, Mater Sci Eng A (2007). https://doi.org/10.1016/j.msea.2006.09.112.

    Article  Google Scholar 

  6. Wang X J, Xu D K, Wu R Z, Chen X B, Peng Q M, Jin L, Xin Y C, Zhang Z Q, Liu Y, Chen X H, and Chen G, J Mater Sci Technol (2018). https://doi.org/10.1016/j.jmst.2017.07.019.

    Article  Google Scholar 

  7. Jayamathy M, Seshan S, Kailas S V, Kumar K, and Srivatsan T S, Mater Manuf Process (2005). https://doi.org/10.1081/AMP-200042006.

    Article  Google Scholar 

  8. Oršulová T, and Palček P, Prod Eng Arch (2018). https://doi.org/10.30657/pea.2018.18.08.

  9. Kumar A, Kumar S, and Mukhopadhyay N K, J Magn Alloys (2018). https://doi.org/10.1016/j.jma.2018.05.006.

    Article  Google Scholar 

  10. Pandey K M, and Dey A, Rev Adv Mater Sci (2015).

  11. Yang M B, Cheng R J, Bai L, Pan F S, and Shen J, Int J Cast Met Res (2008). https://doi.org/10.1179/136404608x336411.

    Article  Google Scholar 

  12. Karuppusamy P, Lingadurai K, and Sivananth V, in Lecture Notes in Mechanical Engineering (2019). https://doi.org/10.1007/978-981-13-1780-4_19.

  13. Sánchez E, Bannier E, Salvador M D, Bonache V, García J C, Morgiel J, and Grzonka J, J Therm Spray Technol (2010). https://doi.org/10.1007/s11666-010-9480-5.

    Article  Google Scholar 

  14. Yildiz F, High Temp Mater Process (2014). https://doi.org/10.1515/htmp-2013-0018.

    Article  Google Scholar 

  15. Banerjee S, Poria S, Sutradhar G, and Sahoo P, J Magn Alloys (2019). https://doi.org/10.1016/J.JMA.2018.11.005.

    Article  Google Scholar 

  16. Lun Sin S, Elsayed A, and Ravindran C, Int Mater Rev (2013). https://doi.org/10.1179/1743280413y.0000000017.

    Article  Google Scholar 

  17. Zhang E, Wang G J, and Hu Z C, Mater Sci Technol (2010). https://doi.org/10.1179/174328409X443173.

    Article  Google Scholar 

  18. Poddar P, Mukherjee S, and Sahoo K L, J Mater Eng Perform (2009). https://doi.org/10.1007/s11665-008-9334-1.

    Article  Google Scholar 

  19. Shankar G, Jayashree P K, Shetty R, Kini A, and Sharma S S, Int J Curr Eng Technol3 (2013) 922.

  20. Powell B R, Luo A A, and Krajewski P E, Adv Mater Automot Eng (2012). https://doi.org/10.1533/9780857095466.150.

    Article  Google Scholar 

  21. ASTM International, ASTM G99: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM Standards (2010). https://doi.org/10.1520/G0099-05R10.2.

    Article  Google Scholar 

  22. Dong S L, Mao J F, Yang D Z, Cui Y X, and Jiang L T, Mater Sci Eng A (2002). https://doi.org/10.1016/S0921-5093(01)01538-6.

    Article  Google Scholar 

  23. Wang X J, Hu X S, Liu W Q, Du J F, Wu K, Huang Y D, and Zheng M Y, Mater Sci Eng A (2017). https://doi.org/10.1016/j.msea.2016.11.072.

    Article  Google Scholar 

  24. Fillot N, Iordanoff I, and Berthier Y, Wear (2007). https://doi.org/10.1016/j.wear.2006.10.011.

    Article  Google Scholar 

  25. Kennedy F E, J Lubr Technol (2009). https://doi.org/10.1115/1.3253293.

    Google Scholar 

  26. Cho T Y, Yoon J H, Kim K S, Song K O, Joo Y K, Fang W, and Hwang S Y, Surf Coat Technol (2008). https://doi.org/10.1016/j.surfcoat.2008.06.106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Karuppusamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppusamy, P., Lingadurai, K. & Sivananth, V. Effects of T4 and T6 Heat Treatments on the Wear Behaviour of WC-Reinforced Mg Alloy Matrix Composite. Trans Indian Inst Met 73, 521–530 (2020). https://doi.org/10.1007/s12666-020-01860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01860-9

Keywords

Navigation