Skip to main content
Log in

Development of Wear Mechanism Map for Al–4Mg Alloy/MgAl2O4 In Situ Composites

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Dry sliding wear behaviour of Al–4Mg alloy and Al–4Mg alloy/MgAl2O4 in situ composites was examined under normal loads of 10–30 N at sliding speeds of 1, 3, 5 and 7 m/s and sliding distance of 1500 m using a pin-on-disc apparatus. Al–4Mg alloy with different wt% (1, 2 and 3) of MgAl2O4 in situ composites was synthesized via ultrasonic cavitation by the addition of H3BO3 powders. Unreinforced alloy and composites were characterized to conclude the role of MgAl2O4 in modifying the wear behaviour of the composite. Worn-out samples and wear debris were examined by scanning electron microscopy and X-ray diffraction in order to obtain the major wear mechanisms of the developed composites. The addition of MgAl2O4 significantly reduces the wear rate of Al–4Mg alloy at higher loads. The operating wear mechanisms observed were delamination, oxidation, abrasion, adhesive, thermal softening and plastic deformation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Satish Kumar T, Shalini S, and Krishna Kumar K, Arch Metall Mater63 (2018) 689.

    Google Scholar 

  2. Satish Kumar T, Subramanian R, Shalini S, and Angelo P C, Forsch Ingenieurwes79 (2015) 123.

    Article  Google Scholar 

  3. Raghu R, Nampoothiri J, and Kumar T S, Measurement129 (2018) 389.

    Article  Google Scholar 

  4. Thandalam S K, Ramanathan S, and Sundarrajan S, J Mater Res Technol4 (2015) 333.

    Article  CAS  Google Scholar 

  5. Xing L, Zhang Y, Shin C, Zhou Y, Zhao N, Liu E, and He C, Mater Sci Eng A617 (2014) 236.

    Article  Google Scholar 

  6. Guo C, Zou T, Shi C, Yang X, Zhao N, Liu E, and He C, Mater Sci Eng A645 (2015) 1.

    Article  CAS  Google Scholar 

  7. Raghu R, Nampoothiri J, Kumar T S, and Subramanian R, Trans Indian Inst Met72 (2019) 1013. https://doi.org/10.1007/s12666-019-01564-9.

    Article  CAS  Google Scholar 

  8. Niranjan K, and Lakshminarayanan P R, Mater Des47 (2013) 167.

    Article  CAS  Google Scholar 

  9. Naveen Kumar G, Narayanasamy R, Natarajan S, Kumaresh Babu S P, Sivaprasad K, and Sivasankaran S, Mater Des31 (2010) 1526.

    Article  CAS  Google Scholar 

  10. Nguyen Q B, Sim Y H M, Gupta M, and Lim C Y H, Tribol Int82, (2015) 464.

    Article  CAS  Google Scholar 

  11. Srinivasu R, Sambasiva Rao A, Madhusudhan Reddy G, and Srinivasa Rao K, Def Technol11 (2015) 140.

    Article  Google Scholar 

  12. Yang L J, Wear263 (2005) 939.

    Article  Google Scholar 

  13. Bowden FP, and Tabor D, The Friction and Lubrication of Solids, Part II, Clarendon Press, Oxford (1964).

    Google Scholar 

  14. Zhong X L, Wong E W L, and Gupta M, Acta Mater55 (2007) 6338.

    Article  CAS  Google Scholar 

  15. Waterhouse R B, Wear45 (1977) 355.

    Article  CAS  Google Scholar 

  16. Suh N P, Wear44 (1977) 1.

    Article  Google Scholar 

  17. Stachowiak G W, and Batchelor A W, Engineering Tribology. 3rd edition, Elsevier Butterworth-Heinemann, Amsterdam (2005).

    Google Scholar 

  18. Bhushan B, Introduction to Tribology, Wiley, New York (2002).

    Google Scholar 

  19. Razavizadeh K and Eyre T S, Wear79 (1982) 325.

    Article  CAS  Google Scholar 

  20. Shanthi M, Nguyen Q B, and Gupta M, Wear269 (2010) 473.

    Article  CAS  Google Scholar 

  21. Taltavull C, Torres B, Lopez AJ, and Rams J, Wear301 (2013) 615.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shalini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.S., Nampoothiri, J., Raghu, R. et al. Development of Wear Mechanism Map for Al–4Mg Alloy/MgAl2O4 In Situ Composites. Trans Indian Inst Met 73, 399–405 (2020). https://doi.org/10.1007/s12666-019-01853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01853-3

Keywords

Navigation