Skip to main content
Log in

Investigation of Low-Temperature Liquid Nitriding Conditions for 316 Stainless Steel for Improved Mechanical and Corrosion Response

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Combined influence of liquid nitriding time and liquid nitriding temperature on the properties of nitrided region developed on 316 stainless steel was investigated. Studies were restricted to low temperatures of 425 °C and 475 °C while the nitriding time was varied from 4 to 16 h. Developed nitrided layers were characterized by optical microscopy, scanning electron microscopy and X-ray diffraction. Mechanical and electrochemical properties of the nitrided layers were characterized, respectively, by Vickers micro-hardness measurements and cyclic polarization studies in 3.5 wt% NaCl solution. After 4-h nitriding at 425 °C or at 475 °C, the developed expanded austenite started to contract with simultaneous decrease in nitrided layer thickness, hardness and corrosion resistance. These prolonged nitriding time effects have been attributed to the decreased chemical potential of nitrogen in salt bath leading to the outward diffusion of N (from sample to salt bath). However, the 4-h nitriding at 475 °C resulted in larger expansion of austenite as compared to 4-h nitriding at 425 °C. Due to this, better mechanical and electrochemical property was realized after 4-h nitriding at 475 °C suggesting that the increased amount of N solubility in sample led to simultaneous increase in hardness and corrosion resistance of stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bell T, Surf Eng 18 (2003) 415.

    Article  Google Scholar 

  2. De Las Heras E, Egidi D A, Corengia P, González-Santamaría D, García-Luis A, Brizuela M, López G A, and Flores Martinez M, Surf Coat Technol202 (2008) 2945.

    Article  Google Scholar 

  3. Laleh M, Kargar F, and Velashjerdi M J, Mater Eng Perform22 (2013) 130.

    Article  Google Scholar 

  4. Kolotyrkin J M, Corrosion19 (2013) 261.

    Article  Google Scholar 

  5. Zheng Z B, and Zheng Y G, Corros Sci112 (2016) 657.

    Article  CAS  Google Scholar 

  6. Thaiwatthana S, Li X Y, Dong H, and Bell T, Surf Eng18 (2002) 140.

    Article  CAS  Google Scholar 

  7. Li C X, and Bell T, Corros Sci46 (2004) 1527.

    Article  CAS  Google Scholar 

  8. Hashemi B, Rezaeeyazdi M, and Azar V, Mater Des32 (2011) 3287.

    Article  CAS  Google Scholar 

  9. Fossati A, Borgioli F, Galvanetto E, and Bacci T, Corros Sci48 (2006) 1513.

    Article  CAS  Google Scholar 

  10. Jayalakshmi M, Huilgol P, Bhat B R, and Bhat K U, Mater Des108 (2016)448.

    Article  CAS  Google Scholar 

  11. Liang W, Appl Surf Sci211 (2003) 308.

    Article  Google Scholar 

  12. Mingolo N, Tschiptschin A P, and Pinedo C E, Surf Coat Technol201 (2006) 4215.

    Article  CAS  Google Scholar 

  13. HoshiyamaY, Mizobata R, and Miyake H, Surf Coat Technol307 (2016) 1041.

  14. Sasidhar, K N, and Meka S R, Acta Materialia161 (2018) 266.

    Article  CAS  Google Scholar 

  15. Sasidhar K N, and Meka S R, Scr Mater162 (2019) 118.

  16. Sasidhar K N, and Meka S R, Sci Rep9 (2019) 1.

    Article  CAS  Google Scholar 

  17. Zhang Z L, and Bell T, Surf Eng1 1985 131.

    Article  Google Scholar 

  18. Ichii K, Fujimura K, and Takase T, Mater Sci Eng A140 (1991) 442.

    Article  Google Scholar 

  19. Stinville J C, Cormier J, Templier C, and Villechaise P, Mater Sci Eng A605 (2014) 51.

    Article  CAS  Google Scholar 

  20. Yu Z, Xu X, Wang L, Qiang J, and Hei Z, Surf Coat Technol153 (2002) 125.

    Article  CAS  Google Scholar 

  21. Balachandran G, Bhatia M L, Ballal N B, and Krishna Rao P, Trans Indian Inst Met55 (2002) 149.

    CAS  Google Scholar 

  22. Asgari M, Barnoush A, Johnsen R, and Hoel R, Mater Sci Eng A529 (2011) 425.

    Article  CAS  Google Scholar 

  23. Christiansen T L, Hummelshøj T S, and Somers M A, Surf Eng26 (2009) 242.

    Article  Google Scholar 

  24. Zhang X, Wang J, Fan H, and Pan D, Appl Surf Sci440 (2018) 755.

    Article  CAS  Google Scholar 

  25. Somers M A J, and Christianesen T, Surface Hardening of Stainless Steel, Woodhead Publishing Limited, Cambridge (2015) p. 557.

    Google Scholar 

  26. Easterday J F, and Pilznienski J R, Low Temperature Nitriding Salt and Method of Use, Patent No. US 6 746 546 B2 (2004) p. 1.

  27. Zhang X, Wang J, Fan H, Yan J, Duan L, Gu T, Xian G, Sun L, and Wang D, Metall Mater Trans A49 (2018) 356.

    Article  CAS  Google Scholar 

  28. Li L, Wang J, Yan J, Duan L, Li X, and Dong H, Metall Mater Trans A49 (2018) 6521.

    Article  CAS  Google Scholar 

  29. Lantelme F, and Henri G, Molten, Elsevier, Amsterdam (2013).

  30. JCPDS. PDF-2 database, Version 2.1. International Center for Diffraction Data (2002).

  31. Christiansen T, and Somers M A J, Metall Mater Trans A37 (2006) 675.

    Article  Google Scholar 

  32. Fonović M, Leineweber A, Robach O, JägleE A, and Mittemeijer E J, Metall Mater Trans A46 (2015) 4115.

    Article  Google Scholar 

  33. Yang W J, Zhang M, Zhao Y H, Shen M L, Lei H, Xu L, Xiao J Q, Gong J, Yu B H, and Sun C, Surf Coat Technol298 (2016) 64.

    Article  CAS  Google Scholar 

  34. Borgioli F, Galvanetto E, and Bacci T, Corros Sci136 (2018) 352.

    Article  CAS  Google Scholar 

  35. Baba H, Kodama T, and Katada Y, Corros Sci44 (2002), 2393.

    Article  CAS  Google Scholar 

  36. Jargelius-Pettersson R F A, Corros Sci41 (1999) 1639.

    Article  CAS  Google Scholar 

  37. Newman R C, and Ajjawi M A A, Corros Sci26 (1986) 1057.

    Article  CAS  Google Scholar 

  38. Flis-Kabulska I, Sun, Y, and Flis J, Electrochim Acta104 (2013) 208.

    Article  CAS  Google Scholar 

  39. Cook A, Padovani C, and Davenport A, J Electrochem Soc164 (2017) C148.

  40. Bandy R, and Van Rooyen D, Corrosion41 (1985) 228.

    Article  CAS  Google Scholar 

  41. Saravanan, P, Raja V S, and Mukherjee S, Corros Sci74 (2013) 106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Ramudu Meka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Chaudhari, G.P. & Meka, S.R. Investigation of Low-Temperature Liquid Nitriding Conditions for 316 Stainless Steel for Improved Mechanical and Corrosion Response. Trans Indian Inst Met 73, 235–242 (2020). https://doi.org/10.1007/s12666-019-01827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01827-5

Keywords

Navigation