Skip to main content
Log in

Effect of Heating Rate on Decomposition Temperature of Goethite Ore

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The decomposition temperature is available for pure, synthetic, stoichiometric goethite and a particular type of goethite ore. The decomposition temperature depends on the size of grains, temperature, pressure, heating rate and so on. The decomposition temperature of goethite decides the drying and preheating temperature on induration stand during thermal hardening of the pellets. The induration steps are designed based on the thermal behavior of goethite. The goethite ores, because of their chemically combined moisture content, pose special problems. The generation of fines from iron ore due to internal pressure developed from the evaporation of moisture or phase transformation (28% increases in volume) has a harmful effect on induration of pellets and blast furnace performance. Such behavior of iron-bearing materials is evaluated by thermal degradation index. To avoid/control the cracking/breaking of goethite pellet on induration stand, we should be aware of phase transformation temperature and thermal behavior of goethite. Therefore, we can decide the thermal profile for the pelletization of the goethite ore. Therefore, this study is to find out the decomposition temperature of goethite with respect to the mineralogy of ores and heating rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Biswas A K, Principle of Blast Furnace Iron Making: Theory & Practice, 1st Ed (1981).

  2. Meyer K, Pelletizing of Iron Ores, Springer, Heidelberg (1980).

    Google Scholar 

  3. Jaroslav S R B, and Ruzickova Z, Developments in Mineral Processing 7, “Pelletization of Fines”, Elsevier, Amsterdam (1988).

    Google Scholar 

  4. Ball D F, Dartnell, Grieve J, and Wild A R, Agglomeration of Iron Ores, Elsevier, New York (1973).

    Google Scholar 

  5. Diamandescu L, Mihaila-Tarabasanu D, and Fede M, Mater Lett17 (1993) 309.

    Article  CAS  Google Scholar 

  6. Watari F, Delavignette P, Van Landuyt J, and S Amelinckx, J Solid State Chem48 (1983) 49.

    Article  CAS  Google Scholar 

  7. Das S K, Das B, Sakthivel R, and Mishra B K, Miner Process Extr Metall Rev31 (2010) 97.

    Article  CAS  Google Scholar 

  8. Fey M V, and Dixon J B, Clays Clay Miner29 (1981), 91.

    Article  CAS  Google Scholar 

  9. Schulze D G, and Schwertmann U, Clay Miner22 (1987) 83.

    Article  CAS  Google Scholar 

  10. Lima-de-faru J, Zeitschrift fiir Kristallographie, Bd. 119 (1963) 176.

    Article  Google Scholar 

  11. Lima-de-fari J, Acta Cryst23 (1967) 733.

    Article  Google Scholar 

  12. Watanabe Y, and Ishii K, Phys Stat Sol. (A)150 (1995) 673.

    Article  CAS  Google Scholar 

  13. Francombe M H, and Rooksby H P, Clay Min Bull4 (1959) 1.

    Article  CAS  Google Scholar 

  14. Mitov I, Paneva D, and Kunev B, Thermochimica Acta386 (2002) 179.

    Article  CAS  Google Scholar 

  15. Walter D, Buxbaum G, and Laqua W J Therm Anal Calorim63 (2001) 733.

    Article  CAS  Google Scholar 

  16. F Rafat, Arch Appl Sci Res6 (2014) 75.

    Google Scholar 

  17. Goss C J, Mineral Mag51 (1987) 437.

    Article  CAS  Google Scholar 

  18. Coats A V, and Redfern J P, Nature201 (1964) 68.

    Article  CAS  Google Scholar 

  19. Liu Q, Yu Y, Torrent J, Roberts A, Yongxin P, and Zhu R, J Geophysics Res111 (2006) 1.

    Article  Google Scholar 

  20. Kyoung-oh J, Nunna V R M, Hapugoda S, Nguyen A V, and Bruckard W J, Minerals Eng60 (2014)14.

    Article  Google Scholar 

  21. Diakonov I, Khodakovsky I, Schott J, and Sergeeva E, Eur J Miner6 (1994) 967.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the Director, CSIR-National Metallurgical Laboratory, to accord permission in publishing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ammasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammasi, A. Effect of Heating Rate on Decomposition Temperature of Goethite Ore. Trans Indian Inst Met 73, 93–98 (2020). https://doi.org/10.1007/s12666-019-01806-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01806-w

Keywords

Navigation