Skip to main content
Log in

Selection of a Viable Upgradation Strategy Through Physico-chemical and Mineralogical Approach: A Case Study of Low Grade Barsua Iron Ore Fines

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Detailed characterization study is the pioneer step for any mineral beneficiation scheme. A series of mineralogical and peterographic studies coupled with (Brunauer–Emmett–Teller) surface area, (atomic force microscopy), (laser diffraction particle size analyser), FTIR (Fourier transform infrared spectroscopy), contact angle measurement, zeta potential were carried out, and the findings about the mineralogical and physico-chemical nature of the sample have been described. This paper provides a guide on the proper selection of beneficiation route for iron ore with complex mineral assemblage (Hematite–Goethite–Laterite–Quartz–Kaolinite–Gibbsite). The beneficiation method, especially froth flotation process, potential after a thorough characterization is suggested analysed and the successful upgradation by froth flotation route is envisaged. Flotation results indicated that it is possible to achieve high grade iron concentrate along with lower silica, and alumina content providing a specific reagent regime/system for specific mineral assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Patra S, Pattanaik A, Venkatesh A S, and Rayasam V, J Geol Soc India93 (2019) 443.

    Article  CAS  Google Scholar 

  2. Quoicoe I, Nosrati A, Skinner W, and Mensah A J, Chem Eng Sci98 (2013) 40.

    Article  Google Scholar 

  3. Das B, Mishra B K, and Prakash S, Int J Miner Metall Mater17 (2010) 675.

    Article  CAS  Google Scholar 

  4. Dash D, Pradhan S S, and Jena M S, J Soc Geosci Allied Technol (SGAT Bull) 13 (2012) 114.

  5. Indian Mineral Year Book, Indian Bureau of Mines, Nagpur (2017).

  6. Vidyadhar A, Singh A K, Srivastava A, Nayak B, Rao K V, and Das A, in Proceedings of the XI international seminar on mineral processing technology, Jamshedpur (2010), p 583.

  7. Jena M S, Sahu P, and Pradhan S S, Ann Tech J Inst Eng (India) Odisha State Centre56 (2015) 246.

  8. Nayak N P, Int J Eng Innov Technol (IJEIT)3 (2103) 109.

  9. Rath S S, Sahoo H, Das B, and Mishra B K, Miner Eng69 (2014) 57.

    Article  CAS  Google Scholar 

  10. Sahoo H, Rath S S, and Das B, Sep Purif Technol136 (2014) 66.

    Article  CAS  Google Scholar 

  11. Pattanaik A, and Rayasam V, Colloid Interf Sci Commun25 (2018) 41.

    Article  CAS  Google Scholar 

  12. Klein C, and Hurlbut Jr C S, Manual of Mineralogy, 20th ed., Wiley, New York (1985).

    Google Scholar 

  13. Lv X, Huang X, Yin J, and Bai C, ISIJ Int51 (2011) 1432.

  14. Hair M L, J Non-Cryst Solids19 (1975) 299.

    Article  CAS  Google Scholar 

  15. Verdonck L, Hoste S, Roelandt F F, and Van der Kelen G P, J Mol Struct79 (1982) 273.

    Article  CAS  Google Scholar 

  16. Gadsden J A, Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworths, London (1975).

    Google Scholar 

  17. Cornell R, and Schwertmann U, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (2003).

  18. Subramanyan T V, and Natarajan K A, Trans Indian Inst Met41 (1988) 255.

    Google Scholar 

  19. Bickmore B R, Nagy K L, Sandlin P E, and Crater T S, Am Miner87 (2002) 780.

    Article  CAS  Google Scholar 

  20. Montes S, and Montes-Atenas G, Miner Eng18 (2005) 1032.

    Article  CAS  Google Scholar 

  21. Cases J M, and Villieras F, Langmuir8 (1992) 1251.

    Article  CAS  Google Scholar 

  22. Iveson S, Holt S, and Biggs S, Int J Miner Process74 (2004) 281.

  23. Smart R S C, Amarantidis J, Skinner W M, Prestidge C A, La Vanier, Grano S R, Top Appl Phys85 (2003) 3.

  24. Joanny J F, and De Gennes P G, J Chem Phys81 (1984) 552.

  25. Mishra B K, Reddy P S R, Das B, Biswal S K, Prakash S, and Das S K, November issue, Steel World (2007), p 34.

    Google Scholar 

  26. Patra S, Pattanaik A, Rayasam V, Can Metall Q58 (2019) 28.

    Article  CAS  Google Scholar 

  27. Thella J S, Mukherjee A S, and Srikakulapu N G, Powder Technol217 (2012) 18.

    Article  Google Scholar 

  28. Dowling E C, Hebbard J, Eisele T C, and Kawatra S K, Proceedings of the XX1 International Mineral Processing Congress, Massaci ed., Elsevier (2000), p 163.

  29. Pattanaik A, and Venugopal R, Adv Powder Technol29 (2018) 3404.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. M.K. Mohanta, principal scientist, NML-Jamshedpur for his help and support during mineralogical studies and the Central Research Facility of IIT(ISM), Dhanbad, for their support and coordination for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhyarthana Pattanaik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattanaik, A., Patra, S. & Rayasam, V. Selection of a Viable Upgradation Strategy Through Physico-chemical and Mineralogical Approach: A Case Study of Low Grade Barsua Iron Ore Fines. Trans Indian Inst Met 73, 47–63 (2020). https://doi.org/10.1007/s12666-019-01802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01802-0

Keywords

Navigation