Skip to main content
Log in

Study on Formation Mechanism of Axle Part in the New Cross-Wedge Rolling Process Based on Experiment and Simulation

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Aiming at the concavity defects in the cross-wedge rolling (CWR) process, one new rolling method named as the twice closed–open joint CWR was presented to improve the use ratio of material in CWR of the axle parts. The new rolling method included three stages: the first closed rolling, the second closed rolling and the last open rolling. To investigate the flow of material in this rolling process, one 3D finite element model (FEM) of the twice closed–open joint CWR was established. The CWR process of one pump spindle part was simulated using the established 3D FEM. The formation, the flow law of metal materials and concavity defects of end were studied. In addition, the CWR experiments were carried out. The results of simulation agreed with the results of tests well. The results proved that the new method can decrease the extent of concavity and improve the material use ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dong Y, Tagavi KA, Lovell M R, and Deng Z, Int J Mech Sci42 (2000) 1233.

    Article  Google Scholar 

  2. Li Q, Lovell M R, Slaughter W, and Tagavi K, J Mater Process Technol125126 (2002) 248.

    Article  Google Scholar 

  3. Urankar S, Lovell M, Morrow C, Li Q, and Kawada K, J Mater Process Technol177 (2006) 545.

    Article  CAS  Google Scholar 

  4. Zhou J, Xiao C, Yu Y, and Jia Z, Int J Adv Manuf Technol65 (2013) 745.

    Article  Google Scholar 

  5. Lee H W, Lee G A, Yoon D J, Choi S, and Na KH, J Mater Process Technol201 (2008) 112.

    Article  CAS  Google Scholar 

  6. Wang M, Xiang D, Xiao C, Zhou J, and Jia Z, Int J Adv Manuf Technol59 (2012) 473.

    Article  Google Scholar 

  7. Wei Y, Shu X, Han S, Tian D, and Wei J, Int J Adv Manuf Technol95 (2018) 1975.

    Article  Google Scholar 

  8. Sun S H, Xiong Y, Zhao J, Lv Z Q, and Li Y, Scr Mater53 (2005) 137.

    Article  CAS  Google Scholar 

  9. Zhou J, Yu Y, and Zeng Q, Int J Adv Manuf Technol72 (2014) 1559.

    Article  Google Scholar 

  10. Wu H B, and Guo L, Adv Manuf Process29 (2014) 1441.

    Article  CAS  Google Scholar 

  11. Lee R S, and Jou J L, J Mater Process Technol140 (2003) 43.

    Article  Google Scholar 

  12. Shivpuri R, and Eruç E, Int J Mach Tools Manuf33 (1993) 153.

    Article  Google Scholar 

  13. Pater Z, J Mater Process Technol173 (2006) 201.

    Article  CAS  Google Scholar 

  14. Bartnicki J, and Pater Z, J Mater Process Technol164165 (2005) 1154.

    Article  Google Scholar 

  15. Wang M, Li X, Du F, and Zheng Y, Mater Sci Eng A391 (2005) 305.

    Article  Google Scholar 

  16. Çakırcalı M, Kılıçaslan C, Güden M, Kıranlı E, and Shchukin V Y, Int J Adv Manuf Technol65 (2013) 1273.

    Article  Google Scholar 

  17. Yang C, Zheng Z, and Hu Z, Int J Adv Manuf Technol95 (2017) 1.

    CAS  Google Scholar 

  18. Huang X, Wang B, Zhou J, Ji H, and Mu Y, Int J Adv Manuf Technol92 (2017) 1.

    Article  Google Scholar 

  19. Ji H, Liu J, Wang B, Zhang Z, and Zhang T, J Mater Process Technol221 (2015) 233.

    Article  Google Scholar 

  20. Wei B, Wang P, Liu W, Yang M, and Jiang L, Int J Non-Linear Mech83 (2016) 65.

    Article  Google Scholar 

  21. Lin Z C, and Lee S Y, J Mater Process Technol70 (1997) 47.

    Article  Google Scholar 

  22. Zeng J, Xu C, Ren W, and Li P, Int J Adv Manuf Technol91 (2016) 1.

    Article  Google Scholar 

  23. Markov O E, Perig A V, Zlygoriev V N, Markova M A, and Grin A G, Int J Adv Manuf Technol90 (2016) 1.

    Article  Google Scholar 

  24. Pater Z, Weroñski W, Kazanecki J, and Gontarz A, J Mater Process Technol9293 (1999) 458.

    Article  Google Scholar 

  25. Yan H J, Liu J P, Hu Z H, Wang L J, and Liu Y Z, J Cent South Univ43 (2012) 2114.

    Google Scholar 

  26. Chumachenko E N, Logashina I V, and Aksenov S A, Metallurgist50 (2006) 413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, L., Liu, C. & Shu, X. Study on Formation Mechanism of Axle Part in the New Cross-Wedge Rolling Process Based on Experiment and Simulation. Trans Indian Inst Met 72, 3305–3312 (2019). https://doi.org/10.1007/s12666-019-01800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01800-2

Keywords

Navigation