Skip to main content

Corrosion Evaluation of Buried Cast Iron Pipes Exposed to Fire Water System for 30 years

Abstract

The corrosion evaluation of buried cast iron pipe of fire hydrant system in a nuclear power station exposed to raw water for 30 years was carried out. The samples from cast iron pipe section were characterised by inductively coupled plasma atomic emission spectroscopy, optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and laser Raman spectroscopy. Metallographic examination revealed typical flake graphite microstructure with uniform distribution, randomly oriented graphite structure, rosette grouping, for pipes of different diameters. The presence of microbes in water side of the pipes and in contact with soil was seen. SEM examination revealed loose spherical deposits, rust layers comprising of iron oxide, silica and spherical nodules covered with network structures. EDS analysis of rust layers revealed the presence of Si, Ca, S and P apart from Fe and O. XRD analysis revealed that the rust on the surfaces comprised of SiO2 and Fe2O3. The results of the study indicated that the external corrosion of cast iron pipes was due to sand and gravel type of soil in contact with pipes. EDS elemental X-ray maps revealed regions rich in Si indicating localised graphitic corrosion. Detailed corrosion characterisation studies revealed that despite signatures of graphitic corrosion, microbes and rust formation, there was no substantial reduction in the pipe thickness, and hence, the service life of buried cast iron pipes can be further extended.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Seica M V, Packer J A, Grabinsky M W F, and Adams B J, Can J Civ Eng29 (2002) 222.

    CAS  Article  Google Scholar 

  2. Rajani B, Zhan C, and Kuraoka S, Can Geotech J33 (1996) 393.

    Article  Google Scholar 

  3. Logan R, Mulheron M J, Jesson D A, Smith P A, Evans T S, Clay-Michael N, and Whiter J T, WIT Trans Built Env139 (2014) 411 (Urban Water II (eds) Mambretti S, and Brebbia C A, WIT Press, UK).

  4. Romanoff M, Underground Corrosion, National Bureau of Standards Circular579 (1957), Washington (DC): US Government Printing Office.

  5. Li C Q, and Mahmoodian M, Reliab. Eng Syst Safe119 (2013) 102.

    Article  Google Scholar 

  6. Makar J M, Eng Fail Anal7 (2000) 43.

    CAS  Article  Google Scholar 

  7. Cole I S, and Marney D, Corros Sci56 (2012) 5.

    CAS  Article  Google Scholar 

  8. Rajani B, and Makar J, Can J Civ Eng27 (2000) 1259.

    Article  Google Scholar 

  9. Rajani B, and Kleiner Y, Urban Water3 (2001) 151.

    Article  Google Scholar 

  10. Zhang C, Rathnayaka S, Shannon B, Ji J, and Kodikara J, Int J Mech Sci128–129 (2017) 116.

    Article  Google Scholar 

  11. Ji J, Robert D J, Zhang C, Zhang D, and Kodikara J, Struct Saf64 (2017) 62.

    Article  Google Scholar 

  12. Atkinson K, Whiter J T, Smith P A, and Mulheron M, Urban Water4 (2002) 263.

    CAS  Article  Google Scholar 

  13. George R P, Muraleedharan P, Parvathavarthini N, Khatak H S, and Rao T S, Mater Corros51 (2000) 213.

    CAS  Article  Google Scholar 

  14. Ground water brochure 2007 by Central Ground water Board, Chennai and Soil Map of India.

  15. Makar J M, Desnoyers R, and McDonald S E, in International Conference on Underground Infrastructure Research, 10–13 June 2001, Waterloo, Ontario, p 1.

  16. Davis J R, ASM Speciality Hand Book, Cast Irons, ASM International, USA (1996).

    Google Scholar 

  17. ASTM Standard: A 247-10, Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings, ASTM International, West Conshohocken, PA, USA (2010), p 1.

  18. Jiang R, Shannon B, Deo R N, Rathnayaka S, Hutchinson C R, Zhao X-L, and Kodikara J, Australas. J. Water Resour.21 (2017) 77.

    Article  Google Scholar 

  19. ASM Speciality Hand Book: Cast Irons, (ed) Davis J R, ASM International, USA, p 35.

  20. Metallurgy for the Non-Metallurgist, 2nd edn, (ed) Reardon A C, ASM International, USA, p 258.

  21. Antunes R A, Costa I, and Faria D L A de, Mater Res6 (2003) 403.

    CAS  Article  Google Scholar 

  22. Hu J, Dong H, Xu Q, Ling W, Qu J, and Qiang Z, Water Res129 (2018) 428.

    CAS  Article  Google Scholar 

  23. Beimeng Q, Chongwei C, and Yixing Y, Int J Electrochem Sci10 (2015) 545.

    Google Scholar 

  24. Felli F, and Lupi C, Procedia Struct Integrity2 (2016) 2966.

    Article  Google Scholar 

  25. Rushing J C, McNeill L S, and Edwards M, Water Res37 (2003) 1080.

    CAS  Article  Google Scholar 

  26. Petersen R B, and Melchers R E, Corros Prev23 (2012) 1.

    Google Scholar 

  27. Mohebbi H, and Li C Q, Int J Corros2011 (2011) 1.

    Article  Google Scholar 

  28. Doyle G, The Role of Soil in the External Corrosion of Cast-Iron Water Mains in Toronto, Canada, Master of Applied Science Thesis, Department of Civil Engineering, University of Toronto (2000).

  29. Song Y, Jiang G, Chen Y, Zhao P, and Tian Y, Sci Rep7 (2017) 1, Article number: 6865.

  30. De Faria D L A, Venâncio Silva S, and de Oliveira M T, J Raman Spectrosc28 (1997) 873.

    Article  Google Scholar 

  31. Kim Y-S, and Kim J-G, Metals7 (2017) 182.

    Article  Google Scholar 

  32. L. Quej-Aké, Nava N, Espinosa-Medina M A, Liu H B, Alamilla J L, and Sosa E, Corros Eng Sci Technol50 (2015) 311.

    Google Scholar 

  33. Qiu W, Li W, He J, Zhao H, Liu X, and Yuan Y, J Environ Sci74 (2018) 177.

    Article  Google Scholar 

  34. Ray R I, Lee J S, Little B J, and Gerke T L, in NACE International Corrosion Conference, 13–17 March 2011, Houston, Texas, USA, Paper no. 11217, p 1.

  35. Gerke T L, Scheckel KG, Ray R I, and Little B J, Corrosion68 (2012) 025004-1.

    Article  Google Scholar 

  36. Little B J, and Lee J S, Microbiologically Influenced Corrosion, Wiley, Hoboken, New Jersey (2007).

    Book  Google Scholar 

  37. McBeth J M, Little B J, Ray R I, Farrar K M, and Emerson D, Appl Environ Microbiol77 (2011) 1405.

    CAS  Article  Google Scholar 

  38. Nieuwoudt M K, Comins J D, and Cukrowski I, J Raman Spectrosc42 (2011) 1335.

    CAS  Article  Google Scholar 

  39. Lee A P, Webb J, Macey D J, Bronswijk W V, Savarese A R, and de Witt G C, J Biol Inorg Chem3 (1998) 614.

    CAS  Article  Google Scholar 

  40. Oh S J, Cook D C, and Townsend H E, Hyperfine Interact112 (1998) 59.

    CAS  Article  Google Scholar 

  41. Colomban Ph, Cherifi S, and Despert G, J Raman Spectrosc39 (2008) 881.

    CAS  Article  Google Scholar 

  42. Gillet P, Cleach A L, and Madon M, J Geophys Res95 (1990) 21635.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shankar, A.R., Anandkumar, B., Thinaharan, C. et al. Corrosion Evaluation of Buried Cast Iron Pipes Exposed to Fire Water System for 30 years. Trans Indian Inst Met 73, 9–21 (2020). https://doi.org/10.1007/s12666-019-01786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01786-x

Keywords

  • Water pipes
  • Service exposed
  • Cast iron
  • Corrosion