Skip to main content
Log in

Optimization of Machining and Geometrical Parameters to Reduce Vibration While Milling Metal Matrix Composite

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

During end milling of metal matrix composite (MMC), it is subjected to varying impact load and cutting force. This action induces vibration during machining, which results in poor surface finish and increased tool wear. In this study, an attempt has been made to determine the optimum level of geometrical parameters such as helix angle, nose radius and rake angle and machining parameters such as cutting speed, feed rate and depth of cut to obtain minimum vibration amplitude during end milling operation using particle swarm optimization (PSO). Machining was carried out on aluminum (Al 356)/silicon carbide (SiC) particulate MMC using high-speed steel end mill cutter. The experimental design adapted for conducting the experiments was L27 orthogonal design array. The experiments were conducted using vertical machining, and the vibration amplitudes were measured at two positions (spindle and workpiece holder) using a twin-channel piezoelectric accelerometer. The empirical regression model was developed by relating the input parameters and the output vibration amplitudes, and optimization of process parameters to obtain minimum acceleration amplitude was done using PSO. Scanning electron microscopic images of the milled surfaces were examined, and it indicated the presence of cracks and holes due to pulling out of SiC particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Gallab M, and Sklad M, J Mater Process Technol83 (1998) 151.

    Article  Google Scholar 

  2. Jeyakumar S, Marimuthu K, and Ramachandran T, J Mech Sci Technol27 (2013) 2813.

    Article  Google Scholar 

  3. Ozben T, Kilickap E, and Cakır O, J Mater Process Technol198 (2008) 220.

    Article  CAS  Google Scholar 

  4. Seeman M, Ganesan G, Karthikeyan R, and Velayudham A, Int J Adv Manuf Technol48 (2010) (2010) 613.

    Article  Google Scholar 

  5. Premnath A A, Alwarsamy T, and Rajmohan T, Mater Manuf Processes27 (2012) 1035.

    Article  CAS  Google Scholar 

  6. Sornakumar T, and Kathiresan M, Int J Min Metall Mater17 (2010) 648.

    Article  CAS  Google Scholar 

  7. Ozben T, Kilickap E, and Cakır O, J Mater Process Technol198 (2008) 220.

    Article  CAS  Google Scholar 

  8. Bhushan R K, Kumar S, and Das S, Int J Adv Manuf Technol50 (2010) 459.

    Article  Google Scholar 

  9. Dabade U A, Joshi S S, Balasubramaniam R, and Bhanuprasad V V, J Mater Process Technol192 (2007) 66.

    Google Scholar 

  10. Kannan S, and Kishawy H A, J Mater Process Technol198 (2008) 399.

    Article  CAS  Google Scholar 

  11. Basheer A C, Dabade U A, Joshi S S, Bhanuprasad V V, and Gadre V M, J Mater Process Technol197(1) (2008) 439.

    Article  CAS  Google Scholar 

  12. Subramanian M, Sakthivel M, Sooryaprakash K, and Sudhakaran R, Measurement46 (2013) 4005.

    Article  Google Scholar 

  13. Karabulut Ş, Measurement66 (2015) 139149.

    Article  Google Scholar 

  14. Weinert K, Kersting P, Surmann T, and Biermann D, Prod Eng2 (2008) 255.

    Article  Google Scholar 

  15. Arokiadass R, Palaniradja K, and Alagumoorthi N, Trans Nonferrous Met Soc China22 (2012) 1568.

    Article  CAS  Google Scholar 

  16. Zhang J Z, and Chen J C, Int J Adv Manuf Technol39 (2008) 118.

    Article  Google Scholar 

  17. Sivasakthivel P S, Sudhakaran R, and Rajeswari S, Proc Inst Mech Eng Part B J Eng Manuf227 (2013) 1788.

    Article  CAS  Google Scholar 

  18. Sivasakthivel P S, Velmurugan V, and Sudhakaran R, Int J Adv Manuf Technol53 (2011) 453.

    Article  Google Scholar 

  19. Wang Z G, Rahman M, Wong Y S, and Sun J, Int J Mach Tools Manuf45 (2005) 1726.

    Article  Google Scholar 

  20. Saravanan R S R S, Siva Sankar R, Asokan P, Vijayakumar K, and Prabhaharan G, Int J Adv Manuf Technol26 (2005) 30.

    Article  Google Scholar 

  21. Palanisamy P, Rajendran I, and Shanmugasundaram S, Int J Mach Machinability Mater1 (2006) 233.

    Google Scholar 

  22. Ozcelik B, Oktem H, and Kurtaran H, Int J Adv Manuf Technol27 (2005) 234.

    Article  Google Scholar 

  23. Baskar N, Asokan P, Prabhaharan G, and Saravanan R, Int J Adv Manuf Technol25 (2005) 1078.

    Article  Google Scholar 

  24. Yusup N, Zain A M, and Hashim S Z M, Procedia Eng29 (2012) 914.

    Article  Google Scholar 

  25. Shirvanimoghaddam K, Khayyam H, Abdizadeh H, Karbalaei Akbari M, Pakseresh A H, Ghasali E, and Naebe M, Mater Sci Eng A658 (2016) 135.

    Article  CAS  Google Scholar 

  26. Peace G S, Taguchi Methods, A Hands-on Approach. Addison-Wesley, Reading, MA (1992).

    Google Scholar 

  27. Modares H, Alfi A, and Sistani M B N, Eng Appl Artif Intell23 (2010) 1105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeswari Sridhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridhar, R., Perumal Subramaniyan, S. & Ramesh, S. Optimization of Machining and Geometrical Parameters to Reduce Vibration While Milling Metal Matrix Composite. Trans Indian Inst Met 72, 3179–3189 (2019). https://doi.org/10.1007/s12666-019-01783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01783-0

Keywords

Navigation