Skip to main content
Log in

Study on Interface Behavior of SiC/SiO2/Al and SiC/Ni/Al

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

High-temperature oxidation and electroless nickel plating are two common surface modification processes to improve the wettability of SiC/Al interface. The structure and properties of SiC/SiO2/Al and SiC/Ni/Al interface layers were studied for the preparation of aluminum alloy drill pipe. Two kinds of 6.5%SiC/Al–Cu–Mg–Zn composite ingot were prepared using vacuum melting/casting method, and the added SiC particles in the composites were modified by high-temperature oxidation and electroless nickel plating, respectively. Analysis of structure demonstrates that the interface structures of composites ingot are SiC/SiO2/Al structure and SiC/Ni/Al structure, respectively. For SiC/SiO2/Al interface structure, a smooth and dense SiO2 film is well bonded to SiC and Al by chemical bonding. For SiC/Ni/Al interface structure, there is a very thin Ni film between SiC and Al and the bonding strength between Ni and Al is not so strong. Results of the performance test of the composites indicate that the tensile strength and compressive strength of the composites with SiC/SiO2/Al interface structure, respectively, increase by 7.51% and 24.90%, compared with the composites ingot with SiC/Ni/Al interface structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang X H, Peng Z W, Zhong S Y, Wang G R, Hu Q G, and Lin Y H, Int J Electrochem Sci13 (2018) 8970.

    Article  CAS  Google Scholar 

  2. Wang X H, Guo J, Lin Y H, Guo X H, Peng J, and Zhou X Y, Surf Interface Anal, 48 (2016) 860.

    Google Scholar 

  3. Wang X H, Peng Z W, Ma L, Lin Y H, Li G X, and Wang H L, Int J Electrochem Sci, 12 (2017) 11006.

    Article  CAS  Google Scholar 

  4. Liu Y, Hua X Z, Huang J H, Cui X, Zhou X L, and Yu Y W. Chin J Corros Prot36 (2016) 130.

    Google Scholar 

  5. Zhao W X, Effect of SiC Pretreatment on Microstructure and Tensile Properties of SiCp/2014Al Composites, Jilin University (2015).

  6. Guo Y C, Cao C, Li J P, Xu T, and Dong S P, Therm Process45 (2016) 131.

    Google Scholar 

  7. Li L B, An M Z, and Wu G H, J Inorg Chem21 (2005) 982.

    CAS  Google Scholar 

  8. Marumo C, and Pask J A, J Mater Sci12 (1997) 223.

    Article  Google Scholar 

  9. Tekmen C, Saday F, and Cocen U, J Compos Mater42 (2008) 1671.

    Article  CAS  Google Scholar 

  10. Tong H, Hu Z F, Zhang Z, Cai Z W, Qi C Y, He D H, Mo F, and Jiang K Y, Met Funct Mater22 (2015) 53.

    CAS  Google Scholar 

  11. Liu J S, Wettability and Interfacial Structure of Al Alloys with SiC and SiO 2, Jilin University (2016).

  12. Zhao D W, and Mi G F, Aerosp Manuf Technol (2008) 26.

  13. Xia C R, Guo X X, and Li F Q, Colloids Surf A Physicochem Eng Asp179 (2001) 229.

    Article  CAS  Google Scholar 

  14. Tekmen C, Saday F, and Cocen U, J compos Mater42 (2008) 1671.

    Article  CAS  Google Scholar 

  15. Pázmán J, Mádai V, and Tóth J, Int J Microstruct Mater Prop7 (2012) 220.

    Google Scholar 

  16. Liu J A, and Shao L F, Typical Atlas of Aluminum Alloy Extrusion Die, Chemical Industry Press, Beijing (2007).

    Google Scholar 

  17. Wang C T, Ma L Q, Yin M Y, Liu Z Y, Ding Y, Zhang H, and Chen Y G, Spec Cast Nonferrous Alloys309 (2010).

  18. Ye Y, Study on Enhanced Phase Dispersion and Interface Behavior of SiCp/AlCuMg Composites, Southwest Petroleum University (2017).

  19. Wang W M, Pan F S, Sun X W, Zeng S M, and Lu Y, J Chongqing Univ (Nat Sci Ed) (2004) 108.

  20. Liu J Y, Liu Y C, Liu G Q, Yin Y S, and Shi Z L, Chin J Nonferrous Met12 (2002).

  21. Mitlin D, Morris J W, and Radmilovic V, Metall Mater Trans A31 (2000) 2697.

    Article  Google Scholar 

  22. Barlow I C, Rainforth W M, and Jones H, J Mater Sci35 (2000) 1413.

    Article  CAS  Google Scholar 

  23. Wei H, Guan H R, Sun X F, Zheng Q, Hou G C, and Hu Z Q, J Chin Soc Corros Prot24 (2004) 2.

    Google Scholar 

  24. Leon C A, and Drew R A L, Compos Part A Appl Sci Manuf33 (2002) 1429.

    Article  Google Scholar 

  25. Chen S G, Ding H F, and Zheng Z X, Surf Technol30 (2001) 3.

    CAS  Google Scholar 

  26. Liu Y C, ZhangY M, Rong D H, Zhao Y, Yin Y S, and Zuo T J, Ordnance Mater Sci Eng32 (2009) 24.

    Article  Google Scholar 

  27. van Otterloo J L D M, Bagnoli D, and De Hosson J T M, Acta Metall Mater43 (1995) 2649.

    Article  Google Scholar 

  28. Yan G, Zhou J E, and Wang Y F, Rare Metal Mater Eng35 (2006) 1621.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Open Fund Key Laboratory of Oil & Gas Field Material (X151518KCL16) and Chongqing Science and Technology Bureau Fund (CSTC 2017JCYJA1012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, L., Gao, X. et al. Study on Interface Behavior of SiC/SiO2/Al and SiC/Ni/Al. Trans Indian Inst Met 72, 3171–3178 (2019). https://doi.org/10.1007/s12666-019-01782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01782-1

Keywords

Navigation