Skip to main content
Log in

Pitting Corrosion Studies on Fusion Zone of Shielded Metal Arc Welded Type 316LN Stainless Steel Weldments

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

During welding of 316L stainless steel (SS), heat-affected zone (HAZ) is susceptible to sensitisation and fusion zone is susceptible to pitting corrosion in stainless steel welds. High-nitrogen electrodes with 0.045–0.055 wt% C and with different Cr contents were used for welding of prototype fast breeder reactor components. As-welded and thermally aged (823 K for 2 h) weldments of type 316LN SS with different N contents made by arc welding were studied for localised corrosion. ASTM A262 Practice A and E tests and double-loop electrochemical potentiokinetic reactivation studies on as-welded and thermally aged specimens revealed the absence of sensitisation in the HAZ and in fusion zone. However, pitting potential of the weldments was found to vary with the concentration of N + Cr + Mo in fusion zone and found to be lower in the thermally aged samples. The correlation between weld microstructure, alloying elements and pitting corrosion behaviour has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dayal R K, Parvathavarthini N, and Raj B, Int Mater Rev50 (2005) 129.

    Article  CAS  Google Scholar 

  2. Jayakumar T, Bhaduri A K, Mathew M D, Albert S K, and Kamachi Mudali U, Adv Mater Res794 (2013) 670.

    Article  Google Scholar 

  3. Mannan S L, Chetal S C, Raj B, and Bhoje S B, in Proceedings of Seminar on Materials R&D for PFBR (2013).

  4. Silva C C, Farias J P, and de Santana HB, Mater Des30 (2009) 1581.

    Article  CAS  Google Scholar 

  5. Kumar S, and Sahi A S, Int J Comput Appl0975-8887 (2015) 1.

    Google Scholar 

  6. Garcia C, de Tiedra M P, Blanca Y, Martin O, and Martin F, Corros Sci50 (2008) 2390.

    Article  CAS  Google Scholar 

  7. Unnikrishnan R, Idury K S, Ismail T P, Bhandari A, Shekhawat S K, Khatirkar R K, and Sapate S G, Mater Charact93 (2014) 10.

    Article  CAS  Google Scholar 

  8. Pujar M G, Kamachi Mudali U, Dayal R K, and Gill T P S, Corrosion48 (1992) 579.

    Article  CAS  Google Scholar 

  9. Kamachi Mudali U, Hasan Shaikh A R, and Dayal R K, Intergranular Corrosion Behaviour of Type 316LN Weldments, NWS (1997) 1.

  10. Kamachi Mudali U, and Dayal R K, Mater Sci Technol16 (2000) 1.

    Article  Google Scholar 

  11. Baeslack W A, Savage W F, and Duquette D J, Weld J Res Suppl (1979) 83.

  12. Albert S K, and Bhaduri A K, Research and Development in Welding and Hard Facing Towards Construction of Prototype Fast Breeder Reactor, 38th MPA-Seminar, October 1–2, 2012, Stuttgart 195.

  13. Li L, Chai M, Li Y, Bai W, and Duan Q, Appl Mech Mater331 (2013) 578.

    Article  CAS  Google Scholar 

  14. Vijayanand V D, Laha K, Parameswaran P, Ganesan V, and Mathews M D, Mater Sci Eng A 607 (2014) 138.

    Article  CAS  Google Scholar 

  15. Streitcher M A, Theory and Application of Evaluation Test for Detecting Susceptibility to Intergranular Attack in Stainless Steels and Related Alloys-Problems and Opportunities, ASTM STP 656, American Society for Testing and Material, Philadelphia (1975), p 70.

    Google Scholar 

  16. Marttivilpass, Prediction of Micro Segregation and Pitting Corrosion Resistance of Austenic Stainless Steel Welds by Modeling. Doctor of Science in Technology Thesis, Helsinki University (1999) p 1–166.

  17. Kamachi Mudali U, Dayal R K, Gill T P S, and Gnanamoorthy J B, Werkstoffe Corros37 (1986) 637.

    Article  Google Scholar 

  18. Pujar M G, Parvathavarthini N, Dayal R K, Mater Chem Phys123 (2010) 407.

    Article  CAS  Google Scholar 

  19. Toppo A, Pujar M G, Sreevidya N, and Philip J, Def Technol14 (2018) 226.

    Article  Google Scholar 

  20. Poonguzhali A, Pujar M G, and Kamachi Mudali U, J Mater Eng Perform49 (1993) 977.

    Google Scholar 

  21. Ogawa T, Aoki S, Sakamoto T, and Zaizen T, The Weldability of Nitrogen Containing Austenitic Stainless Steel: Chloride Pitting Corrosion Resistance. Missouri (1982) p 139.

  22. Ferrar R A, Hulen C, and Thomas R G, J Mater Sci20 (1985) 2828.

    Article  Google Scholar 

  23. Suuatala N, Metall Trans A144 (1983) 191.

    Article  Google Scholar 

  24. Delong W T, Weld J53 (1974) 2735.

    Google Scholar 

  25. Koteck D J, and Siewert T A, Weld J71 (1992) 1715.

    Google Scholar 

  26. Parvathavarthini N, Dayal R K, Kathak H S, Shankar V, and Shanmugan V, J Nucl Mater355 (2006) 68.

    Article  CAS  Google Scholar 

  27. Toppo A, Pujar M G, Arivazahagan B, Vasudevan M, Mallika C, and Kamachi Mudali U, Corrosion514 (2016) 295.

    Google Scholar 

  28. Basu K, Das M, Bhattacharjee D, and Chakraborti P C, Mater Sci Technol23 (2007) 1278.

    Article  CAS  Google Scholar 

  29. ASTM A262-14, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM International, USA (2014).

  30. David S A, Ferrite Morphologhy and Variations in Ferrite Content in Austenitic Stainless Steel Welds, Cleveland, Ohio (1981) p 63.

  31. Takalo T, Suutula N, and Moiso T, Metall Trans A10 (1979) 1173.

    Article  Google Scholar 

  32. Ghosh S K, Jha S, Mallick P, and Chattopadhyay P P, Mater Manuf Process28 (2013) 249.

    Article  CAS  Google Scholar 

  33. Aydogdu G H, Determination of Susceptibility to Intergranular Corrosion in 304L & 316L Type Stainless Steels by Electrochemical Reactivation Method, Degree of Master of Science Thesis, Middle East Technical University (2004) p 1.

  34. Muraleedharan P, Gnanamoorthy J B, and Prasad Rao K, Corrosion45 (1989) 142.

    Article  CAS  Google Scholar 

  35. Parvathavarthini N, and Dayal R K, J Nucl Mater399 (2010) 62.

    Article  CAS  Google Scholar 

  36. Mozhi T A, Clark W A T, Nishimoto K, Jhonson W B, and Mac Donald D D, Corrosion41 (1985) 555.

    Article  CAS  Google Scholar 

  37. Frankel G S, J Electrochem Soc145 (1998) 2186.

    Article  CAS  Google Scholar 

  38. Szklarska-Smialowska Z, Corrosion27 (1971) 223.

    Article  CAS  Google Scholar 

  39. Raja V S, Corros Rev21 (2003) 1.

    Article  CAS  Google Scholar 

  40. ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, USA, 2014.

Download references

Acknowledgement

The authors would like to thank Dr A.K. Bhaduri, Director, IGCAR, for his constant support and encouragement and Smt. P. Sundari, CSTD/MMG, IGCAR, for providing experimental support during the investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannepalli, S., Ravi Shankar, A., George, R.P. et al. Pitting Corrosion Studies on Fusion Zone of Shielded Metal Arc Welded Type 316LN Stainless Steel Weldments. Trans Indian Inst Met 72, 3089–3105 (2019). https://doi.org/10.1007/s12666-019-01775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01775-0

Keywords

Navigation