Skip to main content
Log in

Ultrasonicated Direct Chill Clad Casting of Magnesium Alloy: A Computational Approach

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The current work introduces a new process ultrasonicated direct chill clad casting (UDCC) and discusses a computational fluid dynamics model of combined solidification of AZ31 alloy billet with A356 alloy as cladding, using ANSYS. The geometry, boundary conditions and casting parameters considered in the present work are of industrial scale. Computations were performed at various casting speeds to understand the profiles of the temperature, clad interface and solid fraction. The solidification phenomena of direct chill clad casting process (DCC) and UDCC were critically discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eskin D G, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, Boca Raton, FL, 2008, p. 1

    Book  Google Scholar 

  2. Miller W S, Zhuang L, Bottema J, Wittebrood A J, Smet P D, Haszler A and Vieregge A, Mater Sci Eng A 280 (2000) 37

    Article  Google Scholar 

  3. Papis K J M, Hallstedt B, Loffler J F and Uggowiter P J, Acta Mater 56 (2008) 3036

    Article  CAS  Google Scholar 

  4. Kim I K and Hong S I, Mater Des 49 (2013) 935

    Article  CAS  Google Scholar 

  5. Liu T, Wang Q D, Sui Y D, Wang Q G and Ding W J, Mater Des 68 (2015) 8

    Article  CAS  Google Scholar 

  6. Wagstaff R B, Lloyd D J and Bischoff T F, Mater Sci Forum, 519-521 (2006) p 1809

    Article  Google Scholar 

  7. Bae J H, Prasada Rao A K, Kim K H and Kim N J, Scripta Mater 64 (2011) 836

    Article  CAS  Google Scholar 

  8. Xing H, Haitao Z, Bo S, Kesheng Z, Lizi H, Ke Q and Jianzhong C, Mater Trans 56 (2015) 1893

    Article  Google Scholar 

  9. Marukovich E I, Branovitsky A M, Na Y S, Lee J H and Choi K Y, Materials & Design 27 (2006) 1016

    Article  CAS  Google Scholar 

  10. Pardeshi R, J Manf Proc 21 (2016) 23

    Article  Google Scholar 

  11. Jiang H, Zhang H, Qin K and Cui J, Trans Nonferrous Met Soc of China 21 (2011) 1692

    Article  CAS  Google Scholar 

  12. Fu Y, Jie J, Wu L, Park J, Sun J, Kim J and Li T, Mater Sci Eng A 561 (2013) 239

    Article  CAS  Google Scholar 

  13. Schmid V G and Ehret L, Zeitschrift Elektrochemie 43 (1937) 869

    CAS  Google Scholar 

  14. Schmid V G and Roll A, Zeitschrift Elektrochemie 45 (1939) 769

    CAS  Google Scholar 

  15. Schmid V G and Roll A, Zeitschrift Elektrochemie 46 (1940) 653

    CAS  Google Scholar 

  16. Eskin D G, J Mater Sci and Tech 33 (2017) 636

    Article  CAS  Google Scholar 

  17. Valencia J J and Quested P N, Thermophysical Properties. ASM Handbook, 15: Casting, p 468-481(https://doi.org/10.1361/asmhba0005240)

  18. Hu W, Le Q, Zhang Z, Bao L and Cui J, J Magnesium and Alloys, 1, (2013) 88

    Article  CAS  Google Scholar 

  19. Bennon W D and Incropera F P, Int. J. Heat Mass Transf., 30 (1987) 2161

    Article  CAS  Google Scholar 

  20. Baserinia A R, Ng H, Weckman D C, Wells M A, Barker S and Gallerneault M, Metal and Mater Trans B 43 (2012) 887

    Article  CAS  Google Scholar 

  21. Gardarsson G, Gudmundsson T, Jonsson M T and Palsson H, The Minerals, Metals and Mater Series, Light metals (2017) p 955–966

    Google Scholar 

  22. Wells M A, i D and Cockcroft S L, Metall and Mater Trans B 32 (2012) 929

    Article  Google Scholar 

  23. Walinjkar D and Prasada Rao A K, Mater Lett 161 (2015) 698

    Article  CAS  Google Scholar 

  24. Prasada Rao A K, Mater and Manf Proc 29 (2015) 848

    Article  Google Scholar 

  25. Nagasivamuni B and Ravi K R, Trans Ind Inst Metals 68 (2015) 1161

    Article  CAS  Google Scholar 

  26. Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, and Jarry P, Ultrasonics Sonochemistry 54 (2019) (171)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Prasada Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, K., Prasada Rao, A.K. Ultrasonicated Direct Chill Clad Casting of Magnesium Alloy: A Computational Approach. Trans Indian Inst Met 72, 3027–3033 (2019). https://doi.org/10.1007/s12666-019-01768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01768-z

Keywords

Navigation