Skip to main content
Log in

Deformation Behavior, Microstructure and Microhardness of Mg–3Al–1Zn Microtubes Processed by Isothermal Micro-Backward Extrusion

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, for the first time, the capability of isothermal micro-backward extrusion method for fabrication of microtubes of coarse-grained as-cast AZ31 magnesium alloy was confirmed. Macrographs of the fabricated microtubes showed no visible surface cracks and acceptable dimensional accuracy. Microstructural investigations of the microtube revealed inhomogeneous microstructure consisting of a non-uniform distribution of shear bands and dynamically recrystallized grains. Microhardness measurements showed considerable enhancement compared with the as-received material due to the formation of shear bands and grain refinement inside them. Moreover, microhardness measurements revealed inhomogeneous mechanical properties of the microtube. Deformation behavior was investigated by finite element simulation using conventional material model. True stress–strains data extracted from experimental micro-compression test were used as the material parameters for finite element simulation. As a result, the regions with the highest material flow were found to be in the vicinity of the radius of the punch. Comparing this result with microstructural investigations showed that these regions had the highest density of shear bands and dynamically recrystallized grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fu M W, and Chan W L, Micro-scaled Products Development via Microforming, Springer, London (2014).

    Book  Google Scholar 

  2. Amani S,  Faraji G, Met Mater Int (2019) https://doi.org/10.1007/s12540-019-00285-4.

  3. Hartl C, in: Y. Qin (Ed.) Micro-Manufacturing Engineering and Technology, William Andrew Publishing, Boston, (2010) p 146.

    Chapter  Google Scholar 

  4. Furushima T, and Manabe K, J Mater Process Technol 191 (2007) 59.

    Article  CAS  Google Scholar 

  5. Furushima T, Imagawa Y, Manabe K I, and Sakai T, J Mater Process Technol 223 (2015) 186.

    Article  CAS  Google Scholar 

  6. Furushima T, and Manabe K, J Mater Process Technol 187188 (2007) 236.

    Article  Google Scholar 

  7. Wang L, Fang G, Qian L, Leeflang S, Duszczyk J, and Zhou J, Prog Natl Sci Mater Int 24 (2014) 500.

    Article  CAS  Google Scholar 

  8. Ensafi M, Faraji G, and Abdolvand H, Mater Lett 197 (2017) 12.

    Article  CAS  Google Scholar 

  9. Abdolvand H, Sohrabi H, Faraji G, and Yusof F, Mater Lett 143 (2015) 167.

    Article  CAS  Google Scholar 

  10. Dieter G E, Kuhn H A, and Semiatin S L, Handbook of Workability and Process Design, ASM International (2003).

  11. Faraji G, Mashhadi M M, Dizadji A F, and Hamdi M, J Mech Sci Technol 26 (2012) 3463.

    Article  Google Scholar 

  12. Skubisz P, Skowronek T, and Siñczak A J, Metall Foundry Eng 33 (2007) 113.

  13. Vander Voort G F, A.S.M.I.H. Committee (2004).

  14. Fu M W W, Wang J L L, and Korsunsky A M M, Int J Mach Tools Manuf 109 (2016) 94.

    Article  Google Scholar 

  15. Dieter G E, and Bacon D, Mechanical Metallurgy, McGraw‐Hill (1988).

  16. Faraji G, Mashhadi M M, Kim H S, Mater Sci Eng A, 528 (2011) 4312.

    Article  Google Scholar 

  17. Kim H L, Lee J H, Lee C S, Bang W, Ahn S H, and Chang Y W, Mater Sci Eng A 558 (2012) 431.

  18. Amani S, Faraji G, Abrinia K, J Manuf Process 28 (2017) 197.

    Article  Google Scholar 

  19. Chun Y B, and Davies C H J, Mater Sci Eng A 556 (2012) 253.

  20. Zhang Z, Wang M P, Jiang N, and Zhu S, J Alloys Compd 512 (2012) 73.

    Article  CAS  Google Scholar 

  21. Amani S, Faraji G, Mehrabadi H K, Abrinia K, Ghanbari H, J Alloys Compd  723 (2017) 467.

    Article  CAS  Google Scholar 

  22. Zhang D, and Li S, Mater Sci Eng A 528 (2011) 4982.

    Article  CAS  Google Scholar 

  23. Chan W L, Fu M W, Lu J, and Liu J G, Mater Sci Eng A 527 (2010) 6638.

  24. Vollertsen F, Prod Eng 2 (2008) 377.

    Article  Google Scholar 

  25. Wang C J, Shan D B, Zhou J, Guo B, and Sun L N, J Mater Process Technol 187188 (2007) 256.

    Article  Google Scholar 

  26. Wagner S W, in, Michigan Technological University (2013).

  27. Kleiner S, Beffort O, and Uggowitzer P J, Scr Mater 51 (2004) 405.

    Article  CAS  Google Scholar 

  28. Kim W, and Sa Y, Scr Mater 54 (2006) 1391.

    Article  CAS  Google Scholar 

  29. Wu Y, Shen Y, Wu P, Chen K, Yu Y, and He G, Int J Solids Struct 0 (2016) 1.

  30. Faraji G, Jafarzadeh H, Jeong H J, Mashhadi M M, and Kim H S, Mater Des 35 (2012) 251.

    Article  CAS  Google Scholar 

  31. Fatemi-Varzaneh S M, Zarei-Hanzaki A, and Beladi H, Mater Sci Eng A 456 (2007) 52.

Download references

Acknowledgements

This work was supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandani, S.T., Faraji, G. Deformation Behavior, Microstructure and Microhardness of Mg–3Al–1Zn Microtubes Processed by Isothermal Micro-Backward Extrusion. Trans Indian Inst Met 72, 2851–2860 (2019). https://doi.org/10.1007/s12666-019-01761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01761-6

Keywords

Navigation