Skip to main content
Log in

Non-equal Channel Multi-Angular Extrusion (NECMAE): A Design for Severe Plastic Deformation—Proof of Concept

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Equal channel angular pressing (ECAP) is currently the most widely used severe plastic deformation (SPD) process. The current work presents a validated finite element modelling for a new SPD process named “non-equal channel multi-angular extrusion (NECMAE)”. NECMAE is combined of two stages; the first stage is a standard ECAP, while the second stage experiences a reduction in cross-sectional area. The effects of different reduction in area—in NECMAE—on material plastic deformation, corner gap, stress distribution and required load were examined. In addition, a mathematical model was developed in order to trace the shear strains imposed on the material at different stages. Cases with higher reduction in area were found to have smaller corner gap, higher and uniform plastic deformation, as well as higher loads. The magnitude of maximum stresses was unaffected by different designs; the shape and size of the highly stressed material varied with die design. The current results were explained in terms of; (1) back pressure; (2) strain hardening; (3) shear angle of the second stage; and (4) shear strain history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Segal V M, Reznikov V I, Drobyshevskii A E, and Kopylov V I, Plastic Metal Working by Simple Shear. Izv Akad Nauk SSSR Met (1981) 115. http://www.scopus.com/inward/record.url?eid=2-s2.0-0019392095&partnerID=40&md5=0e4f3b3572a2c0a92dcf8d4cae3b5629.

  2. El-Danaf E A, Soliman M S, Almajid A A, and El-Rayes M M, Mater Sci Eng A 458 (2007) 226 https://doi.org/10.1016/j.msea.2006.12.077.

    Article  CAS  Google Scholar 

  3. El-Asfoury M S, Nasr M N A, Nakamura K, and Abdel-Moneim A, J Electron Mater 47 (2018) 242. https://doi.org/10.1007/s11664-017-5755-7.

    Article  CAS  Google Scholar 

  4. Furukawa M, Horita Z, and Langdon T G, Mater Sci Eng A 332 (2002) 97. https://doi.org/10.1016/s0921-5093(01)01716-6.

    Article  Google Scholar 

  5. R M R, Venkatraman R, Raghuraman S, and Forging S P, Int J Recent Res Appl Stud 12 (2012) 477.

    Google Scholar 

  6. Soltantabar M, Krishnaiah D A, and Tari A, IOSR J Mech Civ Eng 10 (2014) 01. https://doi.org/10.9790/1684-1060105.

    Article  Google Scholar 

  7. Mazurina I, Sakai T, Miura H, Sitdikov O, and Kaibyshev R, Mater Sci Eng A 473 (2008) 297. https://doi.org/10.1016/j.msea.2007.04.112.

    Article  CAS  Google Scholar 

  8. Altan B, Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials, Nova Science, Hauppauge (2006).

    Google Scholar 

  9. Ramulu P J, Lavanya A, Design and Fabrication of Equal Channel Angular Extrusion Process Analysis for Non-ferrous Materials, Anchor Academic Publishing, Hamburg (2017).

    Google Scholar 

  10. Iwahashi Y, Wang J, Horita Z, Nemoto M, and Langdon T G, Scr Mater 35 (1996) 143. https://doi.org/10.1016/1359-6462(96)00107-8.

    Article  CAS  Google Scholar 

  11. Dobatkin S, Investigations and Applications of Severe Plastic Deformation, Lowe T C, Valiev R Z (eds) nATo Science Series (2000). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Investigations+and+Applications+of+Severe+Plastic+Deformation+NATO+Science+Series#1 (accessed November 10, 2014).

  12. Eivani A R, Ahmadi S, Emadoddin E, Valipour S, and Karimi Taheri A, Comput Mater Sci 44 (2009) 1116. https://doi.org/10.1016/j.commatsci.2008.07.025.

    Article  CAS  Google Scholar 

  13. Segal V M, Mater Sci Eng A 345 (2003) 36. https://doi.org/10.1016/s0921-5093(02)00258-7.

    Article  Google Scholar 

  14. Eivani A R, and Karimi Taheri A, J Mater Process Technol 183 (2007) 148. https://doi.org/10.1016/j.jmatprotec.2006.09.020.

    Article  CAS  Google Scholar 

  15. Lee J C, Seok H K, and Suh J Y, Acta Mater 50 (2002) 4005. https://doi.org/10.1016/s1359-6454(02)00200-8.

    Article  CAS  Google Scholar 

  16. Ghazani M S, and Mosadeg B, J Adv Mater 2 (2014) 47. http://www.jmatpro.ir/article_4612_742.html (accessed November 10, 2014).

  17. Gurăua G, Indian J 21 (2014) 253. http://nopr.niscair.res.in/handle/123456789/28983 (accessed November 10, 2014).

  18. Furui M, Kitamura H, Anada H, and Langdon T G, Acta Mater 55 (2007) 1083. https://doi.org/10.1016/j.actamat.2006.09.027.

    Article  CAS  Google Scholar 

  19. Nakashima K, Horita Z, Nemoto M, and Langdon T G, Acta Mater 46 (1998) 1589. https://doi.org/10.1016/s1359-6454(97)00355-8.

    Article  CAS  Google Scholar 

  20. Hasani A, Tóth L S, Beausir B, J Eng Mater Technol 132 (2010) 031001. https://doi.org/10.1115/1.4001261.

    Article  Google Scholar 

  21. El-Asfoury M S, Nasr M N A, and Abdel-Moneim A, Effect of friction on material behaviour in non-equal channel multi angular extrusion (NECMAE), in: 2016: p. 103. https://doi.org/10.2495/hpsm160101.

  22. Surendarnath S, Sankaranarayanasamy K, and Ravisankar B, IOP Conf Ser Mater Sci Eng 63 (2014) 012011. https://doi.org/10.1088/1757-899x/63/1/012011.

    Article  CAS  Google Scholar 

  23. Kim H, ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket, Online (2004) 1–18.

  24. Balasundar I, Sudhakara Rao M, and Raghu T, Mater Des 30 (2009) 1050. https://doi.org/10.1016/j.matdes.2008.06.057.

    Article  CAS  Google Scholar 

  25. Sharma S, Raghav A K, and Kumar S, AIP Conf Proc 9359 (2014) 112.

    Google Scholar 

  26. Kim H S, Seo M H, and Hong S I, Mater Sci Eng A 291 (2000) 86. https://doi.org/10.1016/s0921-5093(00)00970-9.

    Article  Google Scholar 

  27. Li S, Bourke M A M, Beyerlein I J, Alexander D J, and Clausen B, Mater Sci Eng A 382 (2004) 217. https://doi.org/10.1016/j.msea.2004.04.067.

    Article  CAS  Google Scholar 

  28. Cerri E, De Marco P P, and Leo P, J Mater Process Technol 209 (2009) 1550. https://doi.org/10.1016/j.jmatprotec.2008.04.013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Missions Sector—Egyptian Ministry of Higher Education for financially supporting the current research project. Also, they would like to thank the Japan International Cooperation Agency (JICA) for its continuous support to Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. El-Asfoury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Asfoury, M.S., Nasr, M.N.A. & Abdel-Moneim, A. Non-equal Channel Multi-Angular Extrusion (NECMAE): A Design for Severe Plastic Deformation—Proof of Concept. Trans Indian Inst Met 72, 2827–2838 (2019). https://doi.org/10.1007/s12666-019-01759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01759-0

Keywords

Navigation