Surface Modification of Al5456/BNi-2 Composite by Pulsed Laser Surface Treatment


Effect of pulsed laser surface treatment (PLST) on 5456 aluminum alloy/BNi-2 (nickel-based alloy) composite was investigated. Surface of the Al alloy was initially reinforced by BNi-2 powder via friction stir processing. Later, PLST was employed to promote proper reaction condition between the reinforcement and the matrix. The effects of laser power density and laser pulse distance on the microstructure, hardness and bending strength of the weldments were studied. BNi-2 particles mostly reacted with the matrix after PLST, leading to the precipitation of Al3Ni and Al9Ni2 in situ intermetallic compounds (IMC), while some others remained intact. Intact particles were increased toward the bottom of the fusion zone. As a result of the reactions, a new IMC/Al5456 composite was formed, having higher hardness. The composite possessed enhanced yield strength and reduced ultimate strength.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Miranda G, Carvalho O, Soares D, and Silva F, J Compos Mater 50 (2016) 523.

    CAS  Article  Google Scholar 

  2. 2.

    Baron R P, Wert J A, Gerard D A, and Wawner F E, J Mater Sci 32 (1997) 6435.

    CAS  Article  Google Scholar 

  3. 3.

    Salmon C, Boland F, Colin C, and Delannay F, J Mater Sci 33 (1998) 5509.

    CAS  Article  Google Scholar 

  4. 4.

    Yadav D, and Bauri R, Mater Lett 64 (2010) 664.

    CAS  Article  Google Scholar 

  5. 5.

    Yadav D, and Bauri R, Mater Sci Eng A 528 (2011) 1326.

    Article  Google Scholar 

  6. 6.

    Sahraeinejad S, Izadi H, Haghshenas M, and Gerlich A P, Mater Sci Eng A 626 (2015) 505.

    CAS  Article  Google Scholar 

  7. 7.

    Patel V V, Badheka V, and Kumar A, Mater Manuf Process 31 (2016) 1573.

    CAS  Article  Google Scholar 

  8. 8.

    Patel V V, Badheka V, and Kumar A, Metallogr Microstruct Anal 5 (2016) 278.

    CAS  Google Scholar 

  9. 9.

    Qian J, Li J, Xiong J, Zhang F, and Lin X, Mater Sci Eng A 550 (2012) 279.

    CAS  Article  Google Scholar 

  10. 10.

    Huang C, Li W, Planche M-P, Liao H, and Montavon G, J Mater Sci Technol 33 (2017) 507.

    Article  Google Scholar 

  11. 11.

    Li W, Yang K, Yin S, Yang X, Xu Y, and Lupoi R, J Mater Sci Technol 34 (2017) 440.

    CAS  Article  Google Scholar 

  12. 12.

    Wong T T, Liang G Y, He B L, and Woo C H, J Mater Process Technol 100 (2000) 142.

    Article  Google Scholar 

  13. 13.

    Dutta Majumdar J, Ramesh Chandra B, and Manna I, Wear 262 (2007) 641.

    CAS  Article  Google Scholar 

  14. 14.

    Kikin P Y, Pchelintsev A I, Rusin E E, and Zemlyakova N V, Met Sci Heat Treat 51 (2009) 346.

    CAS  Article  Google Scholar 

  15. 15.

    Kikin P Y, Perevezentsev V N, Pchelintsev A I, and Rusin E E, J Mach Manuf Reliab 36 (2007) 467.

    Article  Google Scholar 

  16. 16.

    Esmaily H, Habibolahzade A, and Tajally M, J Alloy Compd 725 (2017) 1044.

    CAS  Article  Google Scholar 

  17. 17.

    Burton A W, Ong K, Rea T, and Chan I Y, Microporous Mesoporous Mater 117 (2009) 75.

    CAS  Article  Google Scholar 

  18. 18.

    Sabbaghzadeh J, Hamedi M J, Ghaini F M, and Torkamany M J, Metall Mater Trans B 39 (2008) 340.

    Article  Google Scholar 

  19. 19.

    Gao X-L, Liu J, Zhang L-J, and Zhang J-X, Mater Char 93 (2014) 136.

    CAS  Article  Google Scholar 

  20. 20.

    Malek Ghaini F, Hamedi M J, Torkamany M J, and Sabbaghzadeh J, Scr Mater 56 (2007) 955.

    CAS  Article  Google Scholar 

  21. 21.

    Akbari M, Saedodin S, Toghraie D, Shoja-Razavi R, and Kowsari F, Opt Laser Tech 59 (2014) 52.

    CAS  Article  Google Scholar 

  22. 22.

    Ke L, Huang C, Xing L, and Huang K, J Alloy Compd 503 (2010) 494.

    CAS  Article  Google Scholar 

  23. 23.

    Chuang Y-C, Lee S-C, and Lin H-C, Appl Surf Sci 253 (2006) 1404.

    CAS  Article  Google Scholar 

  24. 24.

    Martínez-Villalobos M A, Figueroa I A, Suarez M A, Lara Rodríguez G Á, Novelo Peralta O, González Reyes G, López I A, Verduzco Martínez J, Díaz Trujillo C, J Mex Chem Soc 60 (2016) 67.

    Google Scholar 

  25. 25.

    Ding Y, Northwood D O, and Alpas A T, Surf Eng 13 (1997) 31.

    CAS  Article  Google Scholar 

  26. 26.

    Hawk J A, Franck R E, and Wilsdorf H G F, Metall Trans A. 19 (1988) 2363.

    Article  Google Scholar 

  27. 27.

    Lee I S, Hsu C J, Chen C F, Ho N J, and Kao P W, Compos Sci Technol 71 (2011) 693.

    CAS  Article  Google Scholar 

  28. 28.

    Zhang Q, Xiao B L, Wang W G, and Ma Z Y, Acta Mater 60 (2012) 7090.

    CAS  Article  Google Scholar 

  29. 29.

    Skorokhod V V, Powder Metall Met Ceram 42 (2003) 437.

    CAS  Article  Google Scholar 

  30. 30.

    Yeheskel O, and Dariel M P, Mater Sci Eng A. 354 (2003) 344.

    Article  Google Scholar 

  31. 31.

    Tiryakioğlu M, Robinson J S, Salazar-Guapuriche M A, Zhao Y Y, and Eason P D, Mater Sci Eng A 631 (2015) 196.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hossein Esmaily.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmaily, H., Habibolahzadeh, A. & Tajally, M. Surface Modification of Al5456/BNi-2 Composite by Pulsed Laser Surface Treatment. Trans Indian Inst Met 72, 2511–2521 (2019).

Download citation


  • Aluminum alloy
  • BNi-2 powder
  • AMC composite
  • Friction stir processing
  • Laser surface treatment