Skip to main content
Log in

Materials Design in Digital Era: Challenges and Opportunities

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The role of materials in our daily lives vis-a-vis applications in areas like energy, environment, manufacturing and healthcare can hardly be undermined. Yet, transitioning a new material from its initial discovery to practical use frequently involves significant cost and time. However, of late, materials community is witnessing a fundamental change in the way novel materials are being designed. Recent advancements in computational capabilities coupled with improved quantum mechanical algorithms have paved path for accelerated design and screening of materials. This article briefly describes how we are leveraging modeling and simulation to design/screen materials for various applications such as transdermal drug delivery, high-strength alloys, lithium-ion batteries, corrosion inhibition, mineral processing and recovery of rare-earth elements. Each of the aforementioned examples make use of high-performance computing-based first-principle simulations (ranging from electronic scale to molecular scale) to arrive at a promising material, generating huge amount of ‘data’ in the process. The quantity of data accumulated as a result of these simulations is so large, that the word ‘data’ is no longer a cliché only for the computer science community. Moreover, at this point it seems imperative to substantiate how big data has just scraped research in the materials domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ohno K, Esfarjani K, and Kawazoe Y, Computational Materials Science: From ab initio to Monte Carlo Methods, Springer, Berlin (2018)

  2. Hohenberg P, and Kohn W, Phys Rev 136 (1964) B864.

    Article  Google Scholar 

  3. Kohn W, and Sham L J, Phys Rev 140 (1965) A1133.

    Article  Google Scholar 

  4. Alder B J, and Wainwright T E, J Chem Phys 31 (1959) 459.

  5. Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, and Teller E, J Chem Phys 21 (1953) 1087.

    Article  Google Scholar 

  6. Decuzzi P, and Mitragotri S, Bioeng Transl Med 1 (2016) 8.

    Article  Google Scholar 

  7. Raj S, Jose S, Sumod U S, and Sabitha M, J Pharm Bioall Sci 4 (2012) 186

    Article  Google Scholar 

  8. Guo K W, IJER 36 (2012) 1.

    Google Scholar 

  9. Cao Q, and Rogers J A, Adv Mater 21 (2009) 29.

    Article  Google Scholar 

  10. West J L, and Halas N J, Annu Rev Biomed Eng 5 (2003) 285.

    Article  Google Scholar 

  11. Daniel M C, and Astruc D, Chem Rev 104 (2004) 293.

    Article  Google Scholar 

  12. Nalwa H S, J Biomed Nanotechnol 10 (2014) 2421.

    Article  Google Scholar 

  13. Gupta R, and Rai B, J Phys Chem B 120 (2016) 7133.

    Article  Google Scholar 

  14. Gupta R, and Rai B, Sci Rep 7 (2017) 45292.

    Article  Google Scholar 

  15. Dwadasi B S, Gupta R, and Rai B, PCCP 20 (2018) 25883.

    Article  Google Scholar 

  16. Gupta R, and Rai B, Nanoscale 10 (2018) 4940.

    Article  Google Scholar 

  17. Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, and Makino K, Colloids Surf B Biointerfaces 65 (2008) 1.

    Article  Google Scholar 

  18. Labouta H I, and Schneider M, Nanomed Nanotechnol Biol Med 9 (2013) 39.

    Article  Google Scholar 

  19. Verma A, and Stellacci F, Small 6 (2010) 12.

    Article  Google Scholar 

  20. Gupta R, and Rai B, Nanoscale 9 (2017) 4114.

    Article  Google Scholar 

  21. Martins M, Azoia N G, Melle‐Franco M, Ribeiro A, and Cavaco‐Paulo A, Eng Life Sci 17 (2017) 732.

    Article  Google Scholar 

  22. Singh C V, and Warner D H, Acta Mater 58 (2010) 5797.

    Article  Google Scholar 

  23. Singh C V, Mateos A J, and Warner D H, Scr Mater 64 (2011) 398

    Article  Google Scholar 

  24. Toda-Caraballo I, and Rivera-Díaz-del-Castillo P E J, Acta Mater 85 (2015) 14.

  25. Mishra R S, Kumar N, and Komarasamy M, Mater Sci Technol 31 (2015) 1259.

    Article  Google Scholar 

  26. Maiti S, and Steurer W, Acta Mater 106 (2016) 87.

    Article  Google Scholar 

  27. Zou Y, Maiti S, Steurer W, and Spolenak R, Acta Mater 65 (2014) 85.

    Article  Google Scholar 

  28. Maher M, Am Ceram Soc Bull 95 (2016) 24.

  29. Hazara A K, Chauhan S B S, Gupta A, and Sharma E, FICCI Mines Met Div 9 (2013) 1.

    Google Scholar 

  30. Pradip, Met Mater Process 6 (1994) 170.

  31. Pradip, Ravishankar S A, Sankar T A P, and Khosla N K, Benefication Studies on Alumina-Rich Indian Iron Ore Slimes using Selective Dispersants, Flocculants and Floatation Collectors, in Int Miner Process Congr, Sydney, Australia (1993) p 1289.

  32. Jain V, Rai B, Waghmare U, Tammishetti V, and Pradip, Trans Indian Inst Met 66 (2013) 447.

  33. Jain V, Tammishetti V, Joshi K, Kumar D, Pradip P, and Rai B, Miner Eng 109 (2017) 144.

    Article  Google Scholar 

  34. Kumar D, Jain V, and Rai B, Chitosan as a Selective Flocculant for Beneficiation of High Alumina Containing Indian Iron Ore Slimes: A Theoretical and Experimental Study, in Int Miner Process Congr, Moscow (2018).

  35. Kumar D, Jain V, and Rai B, Miner Eng 121 (2018) 47.

    Article  Google Scholar 

  36. Papavinasam S, Corrosion Control in the Oil and Gas Industry, Gulf Professional Publishing, Amsterdam (2013).

    Google Scholar 

  37. Ostovari A, Hoseinieh S, Peikari M., Shadizadeh S, and Hashemi, S, Corros Sci 51 (2009) 1935.

    Article  Google Scholar 

  38. Misra S G, and Patil P R, US Patent No. 2015/0159077 A1 (2015).

  39. Oguzie E, Adindu C, Enenebeaku C, Ogukwe C, Chidiebere M, and Oguzie K, J Phys Chem C 116 (2012) 13603.

    Article  Google Scholar 

  40. Sharma S, Peter A, and Obot I, J Anal Sci Technol 6 (2015) 26.

    Article  Google Scholar 

  41. Kumar D, Jain V, and Rai B, Corros Sci 142 (2018) 102.

    Article  Google Scholar 

  42. Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma T, Van Dam H, Wang D, Nieplocha J, Apra E, Windus T L, and De Jong W A, Comput Phys Commun 181 (2010) 1477.

    Article  Google Scholar 

  43. Al-Amiery A, Binti Kassim F, Kadhum A, and Mohamad A, Sci Rep 6 (2016) 19890.

    Article  Google Scholar 

  44. Gad E, Azzam E and Halim S, J Pet Egypt 27 (2017) 695.

    Article  Google Scholar 

  45. Khalil N, Electrochim Acta 48 (2003) 2635.

    Article  Google Scholar 

  46. Karzazi Y, El Alaoui M, Belghiti A, Dafali B, and Hammouti A, J Chem Pharm Res 6 (2014) 689.

    Google Scholar 

  47. Kokalj A, Peljhan S, Finšgar M, and Milošev I, J Am Chem Soc 132 (2010) 16657.

    Article  Google Scholar 

  48. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, and Dal Corso A, J Phys Condens Matter 21 (2009) 395502.

    Article  Google Scholar 

  49. Cheng L, Assary R S, Qu X, Jain A, Ong S P, Rajput N N, Persson K, and Curtiss L A, J Phys Chem Lett 6 (2015) 283.

    Article  Google Scholar 

  50. Halls M D, and Tasaki K, J Power Sources 195 (2010) 1472.

    Article  Google Scholar 

  51. Borodin O, Olguin M, Spear C E, Leiter K W, and Knap J, Nanotechnology 26 (2015) 354003.

    Article  Google Scholar 

  52. Zhang Y, and Maginn E J, J Phys Chem Lett 6 (2015) 700.

    Article  Google Scholar 

  53. Ravikumar B, Mynam M, and Rai B, J Phys Chem C 122 (2018) 8173.

    Article  Google Scholar 

  54. Yamada Y, and Yamada A, J Electrochem Soc 162 (2015) A2406.

    Article  Google Scholar 

  55. Bhatt M D, and O’Dwyer C, PCCP 17 (2015) 4799.

    Article  Google Scholar 

  56. Franco A A, RSC Adv 3 (2013) 13027.

    Article  Google Scholar 

  57. Kim S P, Van Duin A C, and Shenoy V B, J Power Sources 196 (2011) 8590.

    Article  Google Scholar 

  58. Xu K, Chem Rev 114 (2014) 11503.

    Article  Google Scholar 

  59. Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, and Maglia F, J Phys Chem Lett 6 (2015) 4653.

    Article  Google Scholar 

  60. Krishnamurthy N and Gupta C K, Extractive Metallurgy of Rare Earths, CRC Press, Boca Raton (2004).

  61. Meyer L, and Bras B, Rare Earth Metal Recycling, in Proc 2011 IEEE Int Symp Sustain Syst Technol (2011) p 1.

  62. Jordens A, Cheng Y P, and Waters K E, Miner Eng 41 (2013) 97.

    Article  Google Scholar 

  63. Alonso E, Sherman A M, Wallington T J, Everson M P, Field F R., Roth R, and Kirchain R E, Environ Sci Technol 46 (2012) 3406.

    Article  Google Scholar 

  64. Zhou B, Li Z, and Chen C, Minerals 7 (2017) 203.

    Article  Google Scholar 

  65. Yoon H S, Kim C J, Chung K W, Kim S D, Lee J Y, and Kumar J R, Hydrometallurgy 165 (2016) 27.

    Article  Google Scholar 

  66. Yang Y, Walton A, Sheridan R, Güth K, Gauß R, Gutfleisch O, Buchert M, Steenari B M, Van Gerven T, Jones P T, and Binnemans K, J Sustain Metall 3 (2017) 122.

    Article  Google Scholar 

  67. Khaironie M T, Masturah M, Meor Sulaiman M Y, and Nazaratul Ashifa S, Adv Mater Res 970 (2014) 209.

    Article  Google Scholar 

  68. Lee M S, Lee J Y, Kim J S, and Lee G S, Sep Purif Technol 46 (2005) 72.

    Article  Google Scholar 

  69. Liu Y, Jeon H S, and Lee M S, Hydrometallurgy 150 (2014) 61.

    Article  Google Scholar 

  70. Huang X, Li J, Long Z, Zhang Y, Xue X and Zhu Z, J Rare Earths 26 (2008) 410.

    Article  Google Scholar 

  71. Wang K, Adidharma H, Radosz M, Wan P, Xu X, Russell C K, Tian H, Fan M, and Yu J, Green Chem 19 (2017) 4469.

    Article  Google Scholar 

  72. Baba Y, Kubota F, Kamiya N, and Goto M, J Chem Eng Jpn 44 (2011) 679.

    Article  Google Scholar 

  73. Smirnova S V, Samarina T O, and Pletnev I V, Novel Ionic Liquids for LiquidLiquid Extraction, Analytical Applications of Ionic Liquids, World Scientific, Singapore (2017) p 139.

    Google Scholar 

  74. Dwadasi B S, Gupta S, Daware S V, Goverapet Srinivasan S, and Rai B, Ind Eng Chem Res 57 (2018) 17209.

    Article  Google Scholar 

  75. Curtarolo S, Hart G L, Nardelli M B, Mingo N, Sanvito S, and Levy O, Nat Mater 12 (2013) 191.

    Article  Google Scholar 

  76. Curtarolo S, Morgan D, Persson K, Rodgers J, and Ceder G, Phys Rev Lett 91 (2003) 135503.

    Article  Google Scholar 

  77. Curtarolo S, Morgan D, and Ceder G, Calphad 29 (2005) 163.

    Article  Google Scholar 

  78. Levy O, Hart G L W, and Curtarolo S, J Am Chem Soc 132 (2010) 4830.

    Article  Google Scholar 

  79. Setyawan W, and Curtarolo S, Comput Mater Sci 49 (2010) 299.

    Article  Google Scholar 

  80. Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Persson K A, and Ceder G, Comput Mater Sci 50 (2011) 2295.

    Article  Google Scholar 

  81. Materials Project www.materialsproject.org. Accessed 10 Oct 2018.

  82. Lin L, MPC 4 (2015) 148.

    Google Scholar 

  83. Curtarolo S, Wahyu S, Shidong W, Junkai X, Kesong Y, Richard H T, Lance J N, Hart GL, Sanvito S, Buongiorno-Nardelli M, and Mingo N, Comput Mater Sci 58 (2012) 227.

  84. Landis D D, Hummelshoj J S, Nestorov S, Greeley J, Dulak M, Bligaard T, Norskov J K, and Jacobsen K W, Comput Sci Eng 14 (2012) 51.

    Article  Google Scholar 

  85. Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, and Wolverton C, NPJ Comput Mater 1 (2015) 15010.

  86. Ghiringhelli L M, Carbogno C, Levchenko S, Mohamed F, Huhs G, Lüders M, Oliveira M, and Scheffler M, NPJ Comput Mater 3 (2017) 46.

  87. Liu R, Ward L, Wolverton C, Agrawal A, Liao W K, and Choudhary A, Deep learning for chemical compound stability prediction, in Proc ACM SIGKDD Workshop Large Scale Deep Learn Data Min (DL-KDD) (2016) p 1.

  88. Dey P, Bible J, Datta S, Broderick S, Jasinski J, Sunkara M, Menon M, and Rajan K, Comput Mater Sci 83 (2014) 185.

    Article  Google Scholar 

  89. Kim C, Pilania G, and Ramprasad R, Chem Mater 28 (2016) 1304.

    Article  Google Scholar 

  90. Pilania G, Balachandran P V, Kim C, and Lookman T, Front Mater 3 (2016) 19.

    Article  Google Scholar 

  91. Jose R, and Ramakrishna S, Appl MaterToday 10 (2018) 127.

  92. Hill J, Mulholland G, Persson K, Seshadri R, Wolverton C, and Meredig B, Mrs Bull 41 (2016) 399.

    Article  Google Scholar 

  93. Jain A, Hautier G, Ong S P, and Persson K, J Mater Res 31 (2016) 977.

    Article  Google Scholar 

  94. Balachandarn V P, Comput Mater Sci 164 (2019) 82.

    Article  Google Scholar 

  95. Olinyk A, Antono E, Sparks T, Ghadbeigi L, Gaultois M, Meredig B, and Mar A, Chem Mater 28 (2016) 7324.

    Article  Google Scholar 

  96. Jain D, Chaube S, Khullar P, Goverapet S S, and Rai B, A coupled machine learning and density functional theory approach to investigate surface and bulk properties of inorganic halide perovskites (under preparation)

Download references

Acknowledgement

The authors acknowledge, with thanks, the support of Mr. K. Ananth Krishnan, EVP & CTO, Tata Consultancy Services (TCS) in pursuing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beena Rai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, D., Dwadasi, B.S., Kumar, D. et al. Materials Design in Digital Era: Challenges and Opportunities. Trans Indian Inst Met 72, 2199–2208 (2019). https://doi.org/10.1007/s12666-019-01702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01702-3

Keywords

Navigation