Effect of Preheating Temperature on the Microstructure and Corrosion Resistance of TiC–Ni Coating by CS/PHIP

  • Chenggang PanEmail author
  • Ji Shi
  • Jing Wei
  • Chuanxiang Zhao
  • Peng He
  • Huajun Wang
Technical Paper


TiC–Ni composite coatings with different preheating temperatures were fabricated in situ on the H13 steel substrate by combustion synthesis combined with pseudo-heat isostatic press. The effects of preheating temperature on microstructure, surface porosity, mechanical properties and corrosion behaviour were investigated. The coatings were characterized by XRD, SEM–EDS and microhardness tester. The in situ composite coatings prepared at different preheating temperatures consisted of a network of Ni binder phase (white) and a spheroidal TiC phase (dark) embedded therein. The grain size of TiC, the proportion of the TiC-reinforced phase, surface hardness and interfacial bonding strength increased with increasing preheating temperature. The density and dimension of the AlNi3 phase after the immersion test decreased with an increase in preheating temperature. The corrosion mechanism of the coating was that the Ni binder phase was corroded by aluminium and the TiC phase got oxidized.


Preheating temperature Combustion synthesis TiC–Ni coating Corrosion 



This work was financially supported by the National Natural Science Foundation of China (No. 51375353 and No. 51475346).


  1. 1.
    Zhang X, He X, Han J, Qu W, and Kvalin V L, Mater Lett 56 (2002) 183.CrossRefGoogle Scholar
  2. 2.
    Xiao G, Fan Q, Gu M, Wang Z, and Jin Z, Mat Sci Eng A Struct 382 (2004) 132.CrossRefGoogle Scholar
  3. 3.
    Han J C, Zhang X H, and Wood J V, Mat Sci Eng A Struct 280 (2000) 328.CrossRefGoogle Scholar
  4. 4.
    Fu Z, Mondal K, and Koc R S, Ceram Int 42 (2016) 9995.CrossRefGoogle Scholar
  5. 5.
    Yang Y F, Wang H Y, Wang J G, and Jiang Q C, J Am Ceram Soc 91 (2008) 3813.CrossRefGoogle Scholar
  6. 6.
    Dunmead S D, Readey D W, Semler C E, and Hol J B, J Am Ceram Soc 72 (1989) 2318.CrossRefGoogle Scholar
  7. 7.
    Holt J B, J Mater Sci 21 (1986) 251.CrossRefGoogle Scholar
  8. 8.
    Choi Y, and Rhee S W, J Mater Sci 30 (1995) 4637.CrossRefGoogle Scholar
  9. 9.
    Manukyan K V, Lin Y C, Rouvimov S, McGinn P J, and Mukasyan A S, J Appl Phys 113 (2013) 024302.CrossRefGoogle Scholar
  10. 10.
    Yang Y F, Wang H Y, Zhang J, Zhao R Y, Liang Y H, and Jiang Q C, J Am Ceram Soc 91 (2008) 2736.CrossRefGoogle Scholar
  11. 11.
    Munir Z A, and Anselmi-Tamburini U, Mat Sci R 3 (1989) 277.CrossRefGoogle Scholar
  12. 12.
    Yamada O, Miyamoto Y, and Koizumi M, J Am Ceram Soc 70 (1987) C-206.Google Scholar
  13. 13.
    Gopagoni S, Hwang J Y, Singh A R P, Mensah B A, Bunce N, Tiley J, Scharf T W, and Banerjee R, J Alloy Compd 509 (2011) 1255.CrossRefGoogle Scholar
  14. 14.
    Azadmehr A, and Taheri-Nassaj E, J Non Cryst Solids 354 (2008) 3225.CrossRefGoogle Scholar
  15. 15.
    Choi Y, and Rhee S W, J Mater Res 8 (1993) 3202.CrossRefGoogle Scholar
  16. 16.
    Choi Y, and Rhee S W, J Mater Sci 28 (1993) 6669.CrossRefGoogle Scholar
  17. 17.
    Saidi A, Chrysanthou A, Wood J V, and Kellie J L F, J Mater Sci 29 (1994) 4993.CrossRefGoogle Scholar
  18. 18.
    Zhang W, Zhang X, Wang J, and Hong C, Mat Sci Eng A Struct 381 (2004) 92.CrossRefGoogle Scholar
  19. 19.
    LaSalvia J C, Kim D K, and Meyers MA, Mat Sci Eng A Struct 206 (1996) 71.CrossRefGoogle Scholar
  20. 20.
    Zarrinfar N, Shipway P H, Kennedy A R, and Saidi A, Scr Mater 46 (2002) 121.CrossRefGoogle Scholar
  21. 21.
    Yang Y F, Wang H Y, Wang J G, and Jiang Q C, J Alloy Compd 509 (2011) 7060.CrossRefGoogle Scholar
  22. 22.
    Durlu N, J Eur Ceram Soc 19 (1999) 2415.CrossRefGoogle Scholar
  23. 23.
    Lemboub S, Boudebane S, Gotor F J, Haouli S, Mezrag S, Bouhedja S, Hesser G, Chadli H, and Chouchane T, Int J Refract Metals Hard Mater 70 (2018) 84.CrossRefGoogle Scholar
  24. 24.
    Stolin A M, and Bazhin P M, Int J Self Propag High Temp Synth 23 (2014) 65.CrossRefGoogle Scholar
  25. 25.
    Boromei I, Casagrande A, Tarterini F, Poli G, Veronesi P, and Rosa R, Surf Coat Technol 204 (2010) 1793.CrossRefGoogle Scholar
  26. 26.
    Liu Z D, Tian J, Li B, and Zhao L P, Mat Sci Eng A Struct 527 (2010) 3898.CrossRefGoogle Scholar
  27. 27.
    Odawara O, and Ikeuchi J, Trans Jpn Inst Met 27 (1986) 702.CrossRefGoogle Scholar
  28. 28.
    Odawara O, Trans Jpn Inst Metals 26 (1985) 578.CrossRefGoogle Scholar
  29. 29.
    Odawara O, J Am Ceram Soc 73 (1990) 629.CrossRefGoogle Scholar
  30. 30.
    Yang Y W, Fu Z Y, and Yuan R Z, J Wuhan Univ Technol 18 (2003) 14.CrossRefGoogle Scholar
  31. 31.
    He S, Fan X A, Chang Q, and Xiao L, Metall Mater Trans B 48 (2017) 1748.CrossRefGoogle Scholar
  32. 32.
    Boutefnouchet H, Curfs C, Triki A, Boutefnouchet A, and Vrel D, Powder Technol 217 (2012) 443.CrossRefGoogle Scholar
  33. 33.
    Yang Y F, Wang H Y, Zhao R Y, Liang Y H, Zhan L, and Jiang Q C, J Alloy Compd 460 (2008) 276.CrossRefGoogle Scholar
  34. 34.
    Yang Y F, Wang H Y, Liang Y H, Zhao R Y, and Jiang Q C, Mat Sci Eng A Struct 474 (2008) 355.CrossRefGoogle Scholar
  35. 35.
    Ye L L, Huang J Y, Liu Z G, Quan M X, and Hu Z Q, J Mater Res 11 (1996) 2092.CrossRefGoogle Scholar
  36. 36.
    Choi Y, Lee J K, and Mullins M E, J Mater Sci 32 (1997) 1717.CrossRefGoogle Scholar
  37. 37.
    Huang L, Wang H Y, Qiu F, and Jiang Q C, Mat Sci Eng A Struct 422 (2006) 309.CrossRefGoogle Scholar
  38. 38.
    Li Y X, Bai P K, Wang Y M, Hu J D, and Guo Z X, Int J Refract Metals Hard Mater 27 (2009) 552.CrossRefGoogle Scholar
  39. 39.
    Zhu G, Wang W, Wang R, Zhao C, Pan W, Huang H, Du D, Wang D, Shu D, Dong A, Sun B, Jiang S, and Pu Y, Materials 10 (2017) 1007.CrossRefGoogle Scholar
  40. 40.
    Sierra C, and Vázquez A J, Sol Energ Mat Sol C 86 (2005) 33.CrossRefGoogle Scholar
  41. 41.
    Riley D P, Intermetallics 14 (2006) 770.CrossRefGoogle Scholar
  42. 42.
    Wang H, Zhang S, Zhu J, Huang J, Liu H, and Zhang H, J Therm Spray Tech 18 (2009) 103.CrossRefGoogle Scholar
  43. 43.
    Yang S, Zhong M, and Liu W, Mat Sci Eng A Struct 343 (2003) 57.CrossRefGoogle Scholar
  44. 44.
    Mogonye J E, Srivastava A, Gopagoni S, Banerjee R, and Scharf T W, Tribol Lett 64 (2016) 37.CrossRefGoogle Scholar
  45. 45.
    Humenik M, and Parikh N M, J Am Ceram Soc 39 (1956) 60.CrossRefGoogle Scholar
  46. 46.
    Ye D L, and Hu J H, Practical inorganic thermodynamics manual, Metallurgical Industry Press, Beijing (2002).Google Scholar
  47. 47.
    Merzhanov A G, an`ya I P, Dokl Akad Nauk SSSR 204 (1972) 366.Google Scholar
  48. 48.
    Wei M X, Wang S Q, Wang F, and Cui X H, Mater Des 30 (2009) 3041.CrossRefGoogle Scholar
  49. 49.
    Boutefnouchet H, and Vrel D, Int J Self Propag High Temp Synth, 25 (2016) 67.CrossRefGoogle Scholar
  50. 50.
    Wong J, Larson E M, Holt J B, Waide P A, Rupp B, and Frahm R, Science 249 (1990) 1406.CrossRefGoogle Scholar
  51. 51.
    Munir Z A. J Mater Synth Process 1 (1993) 387.Google Scholar
  52. 52.
    Morsi K, J Mater Sci 47 (2012) 68.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Guangzhou JFE Steel Sheet Co., LtdGuangzhouPeople’s Republic of China
  3. 3.Wuhan Second Ship Design and Research InstituteWuhanPeople’s Republic of China
  4. 4.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations