Skip to main content
Log in

Microstructure and Mechanical Behavior of Friction-Stir-Welded 2017A-T451 Aluminum Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, friction stir welding of 2017A-T451 aluminum alloy has been investigated using different tool rotational speeds varying from 950 to 1250 rpm. The study revealed remarkable effect of the rotational speed on both the microstructure and the mechanical behavior of the weld joint. Significant grain growth was noticed in the heat-affected zone (HAZ), whereas the grain size of the nugget zone (NZ) was insensitive to the rotational speed variation. Increasing the tool rotational speed from 950 to 1250 rpm improved the stirring of the material and shifted the fracture location from the NZ to the HAZ. Local tensile characterization highlighted the heterogeneity of the mechanical behavior that was related to microstructural heterogeneity across the weld joint. Brittle behavior was observed in the NZ, whereas a typical elastic–plastic behavior was detected in the HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dursun T, and Soutis C, Mater Des 56 (2014) 862.

    Article  Google Scholar 

  2. Shude J, Ruofei H, Liguo Z, Xiangchen M, and Zan L, Trans Indian Inst Met 71 (2018) 2057.

    Article  Google Scholar 

  3. Aydin H, Tutar M, Durmuş A, Bayram A, and Sayaca T, Trans Indian Inst Met 65 (2012) 21.

    Article  Google Scholar 

  4. Aydın H, Bayram A, Uguz A, and Akay K S, Mater Des 30 (2009) 2211.

    Article  Google Scholar 

  5. Olga V, and Flores A, Scr Mater 38 (1998) 703.

    Article  Google Scholar 

  6. Thomas W M, and Dawes C, Weld J 75 (1996) 41.

    Google Scholar 

  7. Tongne A, Jahazi Feulvarch M, and Desrayaud E C, J Mater Proc Technol 221 (2015) 269.

    Article  Google Scholar 

  8. Zhang Z H, Li W Y, Feng Y, Li J L, and Chao Y J, Acta. Mater 92 (2015) 117.

    Article  Google Scholar 

  9. Moghadam D G, Farhangdoost K, and Nejad R M, Metall Mater Trans B 47 (2016) 2048.

    Article  Google Scholar 

  10. Chen Y C, Feng J C, and Liu H J, Mater Charact 60 (2009) 476.

    Article  Google Scholar 

  11. Sato Y S, Kokawav H, Enomoto M, Jogan S, and Hashimoto T, Metall Mater Trans A 30 (1999) 3125.

    Article  Google Scholar 

  12. Sato Y S, Park S H C, and Kokawa H, Metall Mater Trans A 32 (2001) 3033.

    Article  Google Scholar 

  13. Svensson E, Karlsson L, Larsson H, Karlsson B, Fazzini M, and Karlsson J, Sci Technol Weld J 5 (2000) 285.

    Article  Google Scholar 

  14. Von Strombeck A, Dos Santos J F, Torster F, Laureano P, and Kocak M, Proceedings of the 1st International Friction Stir Welding Conference, Thousand Oaks, CA, USA, Cambridge (UK): TWI (1999).

  15. Sato Y S, and Kokawa H, Metall Mater Trans A 32 (2001) 3023.

    Article  Google Scholar 

  16. Khan N Z, Siddiquee A N, Khan Z A, and Mukhopadhyay A K, J Alloys Compd 695 (2017) 2902.

    Article  Google Scholar 

  17. Su J Q, Nelson T W, Mishra R, and Mahoney M, Acta Mater 51 (2003) 713.

    Article  Google Scholar 

  18. Murr L E, Liuand G, and Mc Clure J C, J Mater Sci Lett 16 (1997) 1801.

    Article  Google Scholar 

  19. Sato Y S, Kokawa H, Enomoto M, and Jogan S, Metall Mater Trans A 30 (1999) 2429.

    Article  Google Scholar 

  20. Liu H J, Fujii H, and Nogi K, J Mater Sci 40 (2005) 3297.

    Article  Google Scholar 

  21. Yong Z, Zhengping L, Keng Y, and Linzhao H, Mater Des 65 (2015) 675.

    Article  Google Scholar 

  22. Ericsson M, and Sandström R, Int J Fat 25 (2003) 1379.

    Article  Google Scholar 

  23. Zhou C, Yang X, and Luan G, Mater Chem Phys 98 (2006) 285.

    Article  Google Scholar 

  24. Tajiri A, Uematsu Y, Kakiuchi T, Tozaki Y, Suzuki Y, and Afrinaldi, Int J Fat 80 (2015) 192.

    Article  Google Scholar 

  25. Deng C, Wang H, Gong B, Li X, and Lei Z, Int J Fat 83 (2016) 100.

    Article  Google Scholar 

  26. Miranda A C O, Gerlich A, and Walbridge S, Eng Fract Mech 147 (2015) 243.

    Article  Google Scholar 

  27. ASTM E112-13 Standard Test Methods for Determining Average Grain Size, ASTM International (2013).

  28. ASTM. E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials, ASTM International (2016).

  29. Le Jolu T, Etude de l’influence des defaults de soudage sur le comportement plastique et la durée de vie en fatigue de soudures par friction-malaxage d’un alliage Al–Cu–Li, PhD Thesis, Ecole Nationale Superieure des Mines de Paris France (2011).

  30. ASTM. E466-15. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International (2015).

  31. Leitão C, Louro R, and Rodrigues D M, Mater Des 37 (2012) 402.

    Article  Google Scholar 

  32. Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford (2004).

  33. Jata K V, and Semiatin S L, Scr Mater 43 (2000) 743.

    Article  Google Scholar 

  34. Heinz B, and Skrotzki B, Metall Mater Trans B 33 (2002) 489.

    Article  Google Scholar 

  35. Mroczka K, Dutkiewicz J, and Pietras A, J Micro 237 (2010) 521.

    Article  Google Scholar 

  36. Bocchi S, Cabrini M, D’Urso G, Giardini C, Lorenzi S, and Pastore T, J Manuf Process 35 (2018) 1.

    Article  Google Scholar 

  37. Biswas A, Siegel D J, Wolverton C, and Seidman D N, Acta Mater 59 (2011) 6187.

    Article  Google Scholar 

  38. Tsao C-S, Huang E-W, Wen M-H, Kuo T-Y, Jeng S-L, Jeng U-S, and Sun Y-S, J Alloys Compd 579 (2013) 138.

    Article  Google Scholar 

  39. Al Jarrah J A, Swalha S, Abu Mansour T, Ibrahim M, Al Rashdan M, and Al Qahsi D A, Mater Des 56 (2014) 929.

    Article  Google Scholar 

  40. Rajakumar S, Muralidharan C, and Balasubramanian V, Mater Des 32 (2011) 535.

    Article  Google Scholar 

  41. Liu H J, Fujii H, Maeda M, and Nogi K, J Mater Proc Technol 142 (2003) 692.

    Article  Google Scholar 

  42. Jata K V, Sankaran K K, and Ruschau J J, Metall Mater Trans A 31 (2000) 2181.

    Article  Google Scholar 

  43. Dubost B, and Sainfort P, Durcissement par précipitation des alliages d’aluminium Tech. Ing. M240-19 (1991).

Download references

Acknowledgements

The authors would like to thank Mr Loic Joanny for SEM observations and EDS analyses. The financial support of the Aeronautical Research and Development Centre and the Research Centre in Industrial Technologies is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Badji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimouni, O., Badji, R., Kouadri-David, A. et al. Microstructure and Mechanical Behavior of Friction-Stir-Welded 2017A-T451 Aluminum Alloy. Trans Indian Inst Met 72, 1853–1868 (2019). https://doi.org/10.1007/s12666-019-01663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01663-7

Keywords

Navigation