Skip to main content
Log in

Efficacy of External Stationary Shoulder for Controlling Residual Stress and Distortion in Friction Stir Welding

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Considerable residual stress and distortion are inevitably produced by friction stir welding (FSW). An external stationary shoulder was applied to control and eliminate the residual stress and distortion of FSW joint. A thermo-mechanical model was utilized to analyze the effects of rotational velocities on temperature and stress distribution during welding. Results showed that the stationary shoulder provided synchronous rolling and intense cooling functions during welding, which reduced the peak residual tensile stress near the weld of FSW. The residual distortion of FSW joint was greatly reduced by the external stationary shoulder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu H J, Fujii H, Maeda M, and Nogi K, J Mater Process Technol 142 (2003) 692.

    Article  Google Scholar 

  2. Simar A, Bréchet Y, Meester B D, Denquin A, and Pardoen T, Mater Sci Eng A 486 (2008) 85.

    Article  Google Scholar 

  3. Aydin H, Durmuş A, Bayram A, and Sayaca T, Trans Indian Inst Met 65 (2012) 21.

    Article  Google Scholar 

  4. Ma Z W, Jin Y Y, Ji S D, Meng X C, Ma L, and Li Q H, J Mater Sci Technol 35 (2019) 94.

    Article  Google Scholar 

  5. Wang X H, and Wang K, Mater Sci Eng A 431 (2006) 114.

    Article  Google Scholar 

  6. Dinaharan I, Murugan N, and Parameswaran S, Trans Indian Inst Met 65 (2012) 159.

    Article  Google Scholar 

  7. Lombard H, Hattingh D G, Steuwer A, and James M N, Mater Sci Eng A 501 (2009) 119.

    Article  Google Scholar 

  8. Long T, Tang W, and Reynolds A P, Sci Technol Weld Join 12 (2007) 311.

    Article  Google Scholar 

  9. Riahi M, and Nazari H, Int J Adv Manuf Technol 55 (2011) 143.

    Article  Google Scholar 

  10. Giorgi M D, Scialpi A, Panella F W, and Filippis L A C D, J Mech Sci Technol 23 (2009) 26.

    Article  Google Scholar 

  11. Tufaro L N, Burgueno A, and Svoboda H G. Soldagem Insp 17 (2012) 327.

    Article  Google Scholar 

  12. Ji S D, Yang Z P, Wen Q, Yue Y M, and Zhang L G, High Temp Mater Process 37 (2018) 397.

    Article  Google Scholar 

  13. Kim Y G, Fujii H, Tsumura T, Komazaki T, and Nakata K, Mater Sci Eng A 415 (2006) 250.

    Article  Google Scholar 

  14. Richter-Trummer V, Suzano E, Beltrão M, Roos A, and Santos J F D, Mater Sci Eng A 538 (2012) 81.

    Article  Google Scholar 

  15. Jiang X, Wynne B P, and Martin J, J Mater Sci Technol 34 (2018) 198.

    Article  Google Scholar 

  16. Russell M J, Blignault C, Horrex N L, and Wiesner C S, Weld World 52 (2008) 12.

    Article  Google Scholar 

  17. Li Z W, Yue Y M, Ji S D, Chai P, and Zhou Z L, Mater Des 90 (2016) 238.

    Article  Google Scholar 

  18. Sun T, Roy M J, Strong D, Withers P J, and Prangell P B, J Mater Process Technol 242 (2017) 92.

    Article  Google Scholar 

  19. Li D X, Yang X Q, Cui L, He F Z, and Zhang X, J Mater Process Technol 222 (2015) 391.

    Article  Google Scholar 

  20. Ji S D, Meng X C, Liu J G, Zhang L G, and Gao S S, Mater Design 62 (2014) 113.

    Article  Google Scholar 

  21. Wang L, Davies C M, Wimpory R C, Xie L Y, and Nikbin K M, Mater High Temp 27 (2010) 167.

    Article  Google Scholar 

  22. Cao X, and Jahazi M, Mater Des 30 (2009) 2033.

    Article  Google Scholar 

  23. Wu C S, Zhang W B, Shi L, and Chen M A, Trans Nonferrous Met Soc 22 (2012) 1445.

    Article  Google Scholar 

  24. Bachmann M, Carstensen J, Bergmann L, Dos Santos J F, Wu C S, and Rethmeier M, Int J Adv Manuf Technol 91 (2016) 1443.

    Article  Google Scholar 

  25. Camilleri D, Micallef D, and Mollicone P, J Therm Stresses 38 (2015) 485.

    Article  Google Scholar 

  26. Cozzolino L D, Coules H E, Colegrove P A, and Wen S, J Mater Process Technol 247 (2017) 243.

    Article  Google Scholar 

  27. Deng D, and Murakawa H, Comput Mater Sci 43 (2008) 681.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “the National Natural Science Foundation of China (No.51705339), the Education Department Foundation of Liaoning Province (No. L201615) and the Science Foundation of State Key Laboratory of Robotics (No. 2016-007)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Li, M., Song, Q. et al. Efficacy of External Stationary Shoulder for Controlling Residual Stress and Distortion in Friction Stir Welding. Trans Indian Inst Met 72, 1349–1359 (2019). https://doi.org/10.1007/s12666-019-01630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01630-2

Keywords

Navigation