Efficacy of External Stationary Shoulder for Controlling Residual Stress and Distortion in Friction Stir Welding

  • Weiliang He
  • Mingshen Li
  • Qi SongEmail author
  • Jinglin Liu
  • Wei Hu
Technical Paper


Considerable residual stress and distortion are inevitably produced by friction stir welding (FSW). An external stationary shoulder was applied to control and eliminate the residual stress and distortion of FSW joint. A thermo-mechanical model was utilized to analyze the effects of rotational velocities on temperature and stress distribution during welding. Results showed that the stationary shoulder provided synchronous rolling and intense cooling functions during welding, which reduced the peak residual tensile stress near the weld of FSW. The residual distortion of FSW joint was greatly reduced by the external stationary shoulder.


Friction stir welding Stationary shoulder 2024-T4 aluminum alloy Residual stress Synchronous rolling Distortion 



This work was supported by “the National Natural Science Foundation of China (No.51705339), the Education Department Foundation of Liaoning Province (No. L201615) and the Science Foundation of State Key Laboratory of Robotics (No. 2016-007)”.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu H J, Fujii H, Maeda M, and Nogi K, J Mater Process Technol 142 (2003) 692.CrossRefGoogle Scholar
  2. 2.
    Simar A, Bréchet Y, Meester B D, Denquin A, and Pardoen T, Mater Sci Eng A 486 (2008) 85.CrossRefGoogle Scholar
  3. 3.
    Aydin H, Durmuş A, Bayram A, and Sayaca T, Trans Indian Inst Met 65 (2012) 21.CrossRefGoogle Scholar
  4. 4.
    Ma Z W, Jin Y Y, Ji S D, Meng X C, Ma L, and Li Q H, J Mater Sci Technol 35 (2019) 94.CrossRefGoogle Scholar
  5. 5.
    Wang X H, and Wang K, Mater Sci Eng A 431 (2006) 114.CrossRefGoogle Scholar
  6. 6.
    Dinaharan I, Murugan N, and Parameswaran S, Trans Indian Inst Met 65 (2012) 159.CrossRefGoogle Scholar
  7. 7.
    Lombard H, Hattingh D G, Steuwer A, and James M N, Mater Sci Eng A 501 (2009) 119.CrossRefGoogle Scholar
  8. 8.
    Long T, Tang W, and Reynolds A P, Sci Technol Weld Join 12 (2007) 311.CrossRefGoogle Scholar
  9. 9.
    Riahi M, and Nazari H, Int J Adv Manuf Technol 55 (2011) 143.CrossRefGoogle Scholar
  10. 10.
    Giorgi M D, Scialpi A, Panella F W, and Filippis L A C D, J Mech Sci Technol 23 (2009) 26.CrossRefGoogle Scholar
  11. 11.
    Tufaro L N, Burgueno A, and Svoboda H G. Soldagem Insp 17 (2012) 327.CrossRefGoogle Scholar
  12. 12.
    Ji S D, Yang Z P, Wen Q, Yue Y M, and Zhang L G, High Temp Mater Process 37 (2018) 397.CrossRefGoogle Scholar
  13. 13.
    Kim Y G, Fujii H, Tsumura T, Komazaki T, and Nakata K, Mater Sci Eng A 415 (2006) 250.CrossRefGoogle Scholar
  14. 14.
    Richter-Trummer V, Suzano E, Beltrão M, Roos A, and Santos J F D, Mater Sci Eng A 538 (2012) 81.CrossRefGoogle Scholar
  15. 15.
    Jiang X, Wynne B P, and Martin J, J Mater Sci Technol 34 (2018) 198.CrossRefGoogle Scholar
  16. 16.
    Russell M J, Blignault C, Horrex N L, and Wiesner C S, Weld World 52 (2008) 12.CrossRefGoogle Scholar
  17. 17.
    Li Z W, Yue Y M, Ji S D, Chai P, and Zhou Z L, Mater Des 90 (2016) 238.CrossRefGoogle Scholar
  18. 18.
    Sun T, Roy M J, Strong D, Withers P J, and Prangell P B, J Mater Process Technol 242 (2017) 92.CrossRefGoogle Scholar
  19. 19.
    Li D X, Yang X Q, Cui L, He F Z, and Zhang X, J Mater Process Technol 222 (2015) 391.CrossRefGoogle Scholar
  20. 20.
    Ji S D, Meng X C, Liu J G, Zhang L G, and Gao S S, Mater Design 62 (2014) 113.CrossRefGoogle Scholar
  21. 21.
    Wang L, Davies C M, Wimpory R C, Xie L Y, and Nikbin K M, Mater High Temp 27 (2010) 167.CrossRefGoogle Scholar
  22. 22.
    Cao X, and Jahazi M, Mater Des 30 (2009) 2033.CrossRefGoogle Scholar
  23. 23.
    Wu C S, Zhang W B, Shi L, and Chen M A, Trans Nonferrous Met Soc 22 (2012) 1445.CrossRefGoogle Scholar
  24. 24.
    Bachmann M, Carstensen J, Bergmann L, Dos Santos J F, Wu C S, and Rethmeier M, Int J Adv Manuf Technol 91 (2016) 1443.CrossRefGoogle Scholar
  25. 25.
    Camilleri D, Micallef D, and Mollicone P, J Therm Stresses 38 (2015) 485.CrossRefGoogle Scholar
  26. 26.
    Cozzolino L D, Coules H E, Colegrove P A, and Wen S, J Mater Process Technol 247 (2017) 243.CrossRefGoogle Scholar
  27. 27.
    Deng D, and Murakawa H, Comput Mater Sci 43 (2008) 681.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Aerospace EngineeringShenyang Aerospace UniversityShenyangPeople’s Republic of China

Personalised recommendations