Advertisement

Effect of Pulse Frequency on Microstructural and Corrosion Properties of Inconel 718 Gas Tungsten Arc Weldments

  • N. Anbarasan
  • S. JeromeEmail author
  • Gandamalla Suresh
  • R. Oyyaravelu
Technical Paper
  • 39 Downloads

Abstract

A study has been carried out to understand the effect of pulse frequencies on the formation of laves phase, the microstructural and corrosion properties of Inconel 718. Bead on welds was made by using gas tungsten arc welding (GTAW) in pulsed mode at different frequencies such as 2, 4, 6, 8 and 10 Hz. Varying frequencies exhibit significant changes in weld surface ripples. Microstructural analysis revealed that the welds at 2, 4 and 6 Hz showed both columnar and equiaxed dendrite structure, while at 8 and 10 Hz, the welds predominantly had equiaxed dendrites. Scanning electron microscopy results showed a reduction in continuous laves phase with the increase in pulsing frequency. Corrosion studies confirmed that the pitting resistance was increased at a higher frequency due to the reduction in laves phase in welds.

Keywords

Corrosion Frequency Laves Ripples 

Notes

Acknowledgements

The authors are grateful to the National Institute of Technology, Tiruchirappalli, India, and Vellore Institute of Technology, India, for supporting this research work.

References

  1. 1.
    Mirzaei M, Jeshvaghani R A, Yazdipour A, and Zangeneh-madar K, Mater Des 51 (2013) 709.CrossRefGoogle Scholar
  2. 2.
    Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, and Madhusudhan Reddy G, Sci Technol Weld Join 9 (2004) 390.Google Scholar
  3. 3.
    Wei P S, J Heat Transf 133 (2011) 031005.CrossRefGoogle Scholar
  4. 4.
    Benea L, 5th IEEE Int Conf E-Health Bioeng 5 (2015).Google Scholar
  5. 5.
    Lucas M J, and Jackson C E, Weld J 49 (1970) 46.Google Scholar
  6. 6.
    Mills W J, Weld J 63 (1984) 237s.Google Scholar
  7. 7.
    Lambarri J, Leunda J, García Navas V, Soriano C, and Sanz C, Opt Lasers Eng 51 (2013) 813.Google Scholar
  8. 8.
    Radhakrishnan C, and Prasad Rao K, J Mater Sci 32 (1997) 1977.Google Scholar
  9. 9.
    Hirata Y, Weld Int 17 (2003) 98.CrossRefGoogle Scholar
  10. 10.
    Long Y, Nie P, Li Z, Huang J, Li X, and Xu X, Trans Nonferrous Met Soc China 26 (2016) 431.CrossRefGoogle Scholar
  11. 11.
    McInerney T J, and Madigan R B, Achieving Grain Refinement through Weld Pool Oscillation, ASM International (2005).Google Scholar
  12. 12.
    Davies G J, and Garland J G, Int Metall Rev 20 (1975) 83.CrossRefGoogle Scholar
  13. 13.
    Janaki Ram G D, Reddy A V, Rao K P, and Reddy G M, J Mater Sci 40 (2005) 1497.Google Scholar
  14. 14.
    Suresh M V, Vamsi Krishna B, Venugopal P, and Prasad Rao K, Sci Technol Weld Join 9 (2004) 362.Google Scholar
  15. 15.
    Manikandan D S, Sivakumar D, Kalvala P, and Kamaraj M, Frequency Modulation Effect on Solidification of Alloy 718 Fusion Zone, Materials Science & Technology (2013).Google Scholar
  16. 16.
    Reddy G M, Mohandas T, and Papukutty K K, J Mater Process Technol 74 (1998) 27.CrossRefGoogle Scholar
  17. 17.
    Ishida T, J Mater Sci 23 (1988) 3232.CrossRefGoogle Scholar
  18. 18.
    Becker D W, and Adams Jr C M, Weld Res Suppl 0 (1979) 143.Google Scholar
  19. 19.
    Kurzynowski T, Smolina I, Kobiela K, Kuźnicka B, and Chlebus E, Mater Des 132 (2017) 349.CrossRefGoogle Scholar
  20. 20.
    Song Y, Shi H, Wang J, Liu F, Han E-H, Ke W, Jie G, Wang J, and Huang H, Acta Metall Sin (English Lett) 30 (2017) 1201.Google Scholar
  21. 21.
    Tusek J, Int J Hydrog Energy 25 (2000) 369.CrossRefGoogle Scholar
  22. 22.
    Anbarasan N, Jerome S, and Arivazhagan N, J Mater Process Technol (2018).Google Scholar
  23. 23.
    ASTM International, ASTM Int G59-97 (2014) 1.Google Scholar
  24. 24.
    Chen T, Nutter J, Hawk J, and Liu X, Corros Sci 89 (2014) 146.CrossRefGoogle Scholar
  25. 25.
    Xiao Y H, den Ouden G, and Den Ouden G, Weld J 69 (1990) 289.Google Scholar
  26. 26.
    Andersen K, Cook G E, Barnett R J, and Strauss A M, IEEE Trans Ind Appl 33 (1997) 464.CrossRefGoogle Scholar
  27. 27.
    Kotecki D J, Cheever D L, and Howden D G, Weld J 51 (1972) 368.Google Scholar
  28. 28.
    Valencia J J, and Quested P N, ASM Handbook, Vol. 15 Cast. 15 (2008) 468.Google Scholar
  29. 29.
    Cieslak M J, Superalloys 718, 625 Var Deriv (1991) 71.Google Scholar
  30. 30.
    Woo I, Nishimoto K, Tanaka K, and Shirai M, Weld Int 14 (2000) 514.CrossRefGoogle Scholar
  31. 31.
    Manikandan S G K, Sivakumar D, Prasad Rao K, and Kamaraj M, Mater Charact 100 (2015) 192.Google Scholar
  32. 32.
    Vishwakarma K R, Richards N L, and Chaturvedi M C, Mater Sci Eng A 480 (2008) 517.CrossRefGoogle Scholar
  33. 33.
    Yang M, Qi B, Cong B, Liu F, andYang Z, Int J Adv Manuf Technol 68 (2013) 19.CrossRefGoogle Scholar
  34. 34.
    Prifiharni S, Anwar M S, Nikitasari A, and Mabruri E, in AIP Conf Proc (2018), p 020041.Google Scholar
  35. 35.
    Chen T, John H, Xu J, Lu Q, Hawk J, and Liu X, Corros Sci 78 (2014) 151.CrossRefGoogle Scholar
  36. 36.
    Gooch T G, Weld Res (1996) 135 s.Google Scholar
  37. 37.
    Itman Filho A, Silva R V, Cardoso W da S, and Casteletti L C, Mater Res 17 (2014) 801.Google Scholar
  38. 38.
    Cardoso J L, Silva Nunes Cavalcante A L, Araujo Vieira R C, de Lima-Neto P, and Gomes da Silva M J, J Mater Res 31 (2016) 1755.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • N. Anbarasan
    • 1
  • S. Jerome
    • 1
    Email author
  • Gandamalla Suresh
    • 1
  • R. Oyyaravelu
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia
  2. 2.School of Mechanical EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations