The Effect of Silicon on Microstructure and Wear Resistance in Bainitic Steel

  • Changle Zhang
  • Hanguang FuEmail author
  • Jian Lin
  • Yongping Lei
Technical Paper


The microstructure, hardness and sliding wear behavior of bainitic steel containing 1.0–2.5% Si were investigated by means of the optical microscope, the scanning electron microscope, the X-ray diffraction, energy-dispersive spectroscopy, Rockwell hardness tester, microhardness tester and M-200 wear tester. The results show that the as-cast structure is mainly composed of acicular lower bainite and retained austenite. As the silicon content increases, the bainitic lath is refined, the retained austenite content is reduced, and the hardness tends to increase. After normalizing at 900 °C, the microstructure of the steel is mainly acicular lower bainite and film-like retained austenite. With the increase in Si content, the bainite needle is more refined, the retained austenite content is reduced, and the hardness is increased by about 20%. In as-cast and normalizing condition, as the silicon content increases, the wear loss of cast steel is reduced, and the wear resistance is improved. The wear loss of normalizing steel is obviously smaller than that of as-cast steel.


Silicon content Bainitic steel Microstructure Hardness Wear resistance 



The authors would like to thank the financial support for this work from National Natural Science Foundation of China under Grant (51775006).


  1. 1.
    Caballelo F G, and Bhadeshia H K D H, Mater Sci Technol 17 (2001) 512.CrossRefGoogle Scholar
  2. 2.
    Sun D Q, Wu C J, and Xie J X, Mater Mech Eng 27 (2003) 4.Google Scholar
  3. 3.
    Asako S, Kawabata T, Aihara S, Kimura S, and Kagehira K, Procedia Struct Integr 2 (2016) 3668.CrossRefGoogle Scholar
  4. 4.
    Mandal D, Ghosh M, Pal J, De P K, Chowdhury G S, Das S K, Das G, and Ghosh S, J Mater Sci 44 (2009) 1069.CrossRefGoogle Scholar
  5. 5.
    Chang L C, Wear 258 (2005) 730.CrossRefGoogle Scholar
  6. 6.
    Gui Z, Tan Y L, and Bai B Z, Heat Treat Met 31 (2006) 4.Google Scholar
  7. 7.
    Huang W G, Fang H S, and Zheng Y K, Trans Mater Heat Treat 18 (1997) 8.Google Scholar
  8. 8.
    Luo K S, and Bai B Z, Mater Des 31 (2010) 2510.CrossRefGoogle Scholar
  9. 9.
    Kannan R, Wang Y, and Li L, J Mater Sci 53 (2018) 12583.CrossRefGoogle Scholar
  10. 10.
    Soliman M, and Palkowski H, Arch Civil Mech Eng 16 (2016) 403.CrossRefGoogle Scholar
  11. 11.
    Singh K, and Singh A, Wear 410 (2018) 63.CrossRefGoogle Scholar
  12. 12.
    Sharma S, Sangal S, and Mondal K, Metall Mater Trans A 42 (2011) 3921.CrossRefGoogle Scholar
  13. 13.
    Chen Y T, Bai B Z, and Fang H S, J Iron Steel Res 13 (2001) 40.Google Scholar
  14. 14.
    Liu D Y, Bai B Z, Fang H S, Yang Z G, Zhang C, and Yan W Y, J Iron Steel Res Int 9 (2002) 46.Google Scholar
  15. 15.
    Jacques P, Girault E, Catlin T, Geerlofs N, Kop T, Zwaag S V D, and Delannay F, Mater Sci Eng A 273 (1999) 475.CrossRefGoogle Scholar
  16. 16.
    Wang H, and Chen Y, Procedia Eng 207 (2017) 1839.CrossRefGoogle Scholar
  17. 17.
    Huang J F, Fang H S, Xu P G, and Zheng Y K, Heat Treat Met (2000) 2.Google Scholar
  18. 18.
    Putatunda S K, Arjun V S, Ronald T, and Gavin L, Mater Sci Eng A 513514 (2009) 329.CrossRefGoogle Scholar
  19. 19.
    Putatunda S K, Mater Des 24 (2003) 435.CrossRefGoogle Scholar
  20. 20.
    Tommy A, and Caroline F, J Iron Steel Res (Int) 15 (2008) 1.Google Scholar
  21. 21.
    Fang H S, Feng C, Zheng Y K, Yang Z G, and Bai B Z, Heat Treat 23 (2008) 2.Google Scholar
  22. 22.
    Hasan S M, Chakrabarti D, and Singh S B, Wear 408409 (2018) 151.CrossRefGoogle Scholar
  23. 23.
    Zhang H, Wu Y X, Li Q J, and Hong X, Wear 406407 (2018) 156.CrossRefGoogle Scholar
  24. 24.
    Arthur S N, Maria J S, Jilt S, and Helio G, Acta Mater 142 (2018) 142.CrossRefGoogle Scholar
  25. 25.
    Lucia M R, Fady A, Stefan Z, Miguel B A, Tsai S P, Yang J R, Dierk R, and Carlos G M, J Alloys Compd 752 (2018) 505.CrossRefGoogle Scholar
  26. 26.
    Acharya P, Kumar A, and Bhat R, MATEC Web Conf 144 (2018) 02013.CrossRefGoogle Scholar
  27. 27.
    Liu B, Lu X, Li W, and Jin X, Wear 398399 (2018) 22.CrossRefGoogle Scholar
  28. 28.
    van Bohemen S M C, Mater Sci Eng A 731 (2018) 119.CrossRefGoogle Scholar
  29. 29.
    Zhou Y X, Song X T, Liang J W, Shen Y F, and Misra R D K, Mater Sci Eng A 718 (2018) 267.CrossRefGoogle Scholar
  30. 30.
    Xu J P, Yao S J, Yan Y W, Liu S F, Fan X M, and Fang M L, China Foundry Mach Technol (2005) 20.Google Scholar
  31. 31.
    Takayama N, Miyamoto G, and Furuhara T, Acta Mater 145 (2018) 154.CrossRefGoogle Scholar
  32. 32.
    Tao S F, Wang F M, Yu Q M, Sun L F, and Chai G Q, Trans Mater Heat Treat 34 (2013) 42.Google Scholar
  33. 33.
    Liu S Z, Yang L, Zhang W, and Zhu D G, Acta Metall Sin 28 (1992) 1.Google Scholar
  34. 34.
    Li F Z, Heat Treat Met (1998) 3.Google Scholar
  35. 35.
    Zhang J S, Xu C X, and Han X P, Mater Sci Technol 7 (1999) 93.Google Scholar
  36. 36.
    Peng Y Z, and He G W, Heat Treat 18 (2003) 13.Google Scholar
  37. 37.
    Chen C Y, J Alloys Compd 762 (2018) 340.CrossRefGoogle Scholar
  38. 38.
    Yang J L, Jiang Y K, Gu L F, Guo Z H, and Chen H Y, Acta Metall Sin 54 (2018) 21.Google Scholar
  39. 39.
    Xu F Y, Wang Y W, Bai B Z, and Fang H S, J Iron Steel Res Int 17 (2010) 46.CrossRefGoogle Scholar
  40. 40.
    Trzaska J, and Dobrzański L A, Mater Process Technol 192193 (2007) 504.CrossRefGoogle Scholar
  41. 41.
    Shah M, and Bakshi S D, Wear 402403 (2018) 207.CrossRefGoogle Scholar
  42. 42.
    Hernandez S, Leiro A, Ripoll M R, Vuorinen E, Sundin K G, and Prakash B, Wear 360361 (2016) 21.CrossRefGoogle Scholar
  43. 43.
    Soliman M, and Palkowski H, Procedia Eng 81 (2014) 1306.CrossRefGoogle Scholar
  44. 44.
    Zhou R, Jiang Y H, Lu D H, Zhou R F, and Li Z H, Wear 250 (2001) 529.CrossRefGoogle Scholar
  45. 45.
    Jiang T, Liu H J, Sun J J, Guo S W, and Liu Y N, Mater Sci Eng A 666 (2016) 207.CrossRefGoogle Scholar
  46. 46.
    Toloui M, and Militzer M, Acta Mater 144 (2018) 786.CrossRefGoogle Scholar
  47. 47.
    Liu Q, Zhao X, Zhang X, and Wang H B, Mater Sci Eng A 720 (2018) 176.CrossRefGoogle Scholar
  48. 48.
    Richardson R C D, Wear 10 (1967) 291.CrossRefGoogle Scholar
  49. 49.
    Hurricks P L, Ind Lubr Tribol 23 (1971) 345.CrossRefGoogle Scholar
  50. 50.
    Balart M J, Davis C L, and Strangwood M, Mater Sci Eng A 328 (2002) 48.CrossRefGoogle Scholar
  51. 51.
    Zhou Y X, Song X T, Liang J W, Shen Y F, and Misra R D K, Mater Sci Eng A 18 (2018) 267.CrossRefGoogle Scholar
  52. 52.
    Shipway P H, Wood S J, and Dent A H, Wear 203 (1997) 196.CrossRefGoogle Scholar
  53. 53.
    Khruschov M M, Wear 28 (1974) 69.CrossRefGoogle Scholar
  54. 54.
    Leiro A, Kankanala A, Vuorinen E, and Prakash B, Wear 273 (2011) 2.CrossRefGoogle Scholar
  55. 55.
    Kannan R, Wang Y Y, Nouri M, Li D Y, and Li L J, Mater Sci Eng A 713 (2018) 1.CrossRefGoogle Scholar
  56. 56.
    Xing X L, Zhou Y F, Yu H, Liu L G, Zhang L J, and Yang Q X, Mater Sci Eng A 738 (2018) 367.CrossRefGoogle Scholar
  57. 57.
    Avishan B, Mater Sci Eng A 729 (2018) 362.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Functional Materials, Ministry of Education, School of Materials Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations