Skip to main content
Log in

Application of 3D EBSD Technique to Study Crystallographic Texture in Heavily Cold-Rolled and Recrystallized Modified 9Cr–1Mo Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Automated electron backscatter diffraction (EBSD) technique in a dual-beam field emission gun scanning electron microscope has been successfully used to obtain three-dimensional (3D) orientation mapping of grains in modified 9Cr–1Mo after severe plastic deformation and recrystallization. In this technique, the microstructure and micro-texture across several sections of the material were studied by means of the state-of-the-art “slice and view” methodology using grazing incidence high-energy Ga+ focused ion beam for slicing and electron beam for viewing and EBSD analysis. By combining the data from each slice, a 3D texture map could be generated by means of image reconstruction technique. The orientation map thus generated provided volumetric microstructural and micro-textural information. The 3D EBSD studies on the heavily deformed mod-9Cr–1Mo steel (cold-rolled 88%) revealed that rolled grains were elongated like plates with thickness ≤ 200 nm. Analysis of the fiber texture components in rolled specimen across the sections showed near equal preference for all fiber texture components with some enhancement of the α-fiber texture. However, by recrystallizing at 1023 K for 1 h, elongated grains along rolling direction with large diameters (~ 40 to 100 µm) were observed together with finer (size ~ 0.5 to 2 µm) polygonal grains and γ-fiber texture component dominated over other texture components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jensen D J, and Poulsen H F, Mater Charact 72 (2012) 1.

    Article  Google Scholar 

  2. Zaafarani N, Raabe D, Singh R N, Roters F, and Zaefferer S, Acta Mater 54 (2006) 1863.

    Article  Google Scholar 

  3. Mazumder B, Purohit V, Gruber M, Vella A, Vurpillot F, and Deconihout B, Thin solid Films 589 (2015) 38.

    Article  Google Scholar 

  4. Ferry M, Xu W, Quadir Md. Z, Zinnia N A, Laws K, Mateescu N, Robin L, Bassman L, Cairney J, Humphreys J, Albou A, and Driver J, Mater Sci Forum 715716 (2012) 41.

    Google Scholar 

  5. Zaefferer S, Wright S I, and Raabe D, Metall Mater Trans A, 39A (2008) 374.

    Article  Google Scholar 

  6. Rowenhorst D J, Gupta A, Feng C R, and Spanos G, Scr Mater 55 (2006) 11.

    Article  Google Scholar 

  7. Engler O, and Randle V, Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping, 2nd edn, CRC Press, New York (ISBN 978-1-4200-6365-3).

  8. Klueh R L, and Harries D R, High-chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM International (ISBN 0-8031-2090-7).

  9. Hollner S, Fournier B, Le Pendu J, Cozzika T, Tournie I, Brachet J C, and Pineau A, J Nucl Mater 405 (2010) 101.

    Article  Google Scholar 

  10. Samjdar I, Verlinden B, Kestens L, and Van Houtte P, Acta Mater 47 (1999) 55.

  11. Parida P K, Dasgupta A, and Saibaba S, J Nucl Mater 432 (2013) 450.

    Article  Google Scholar 

  12. Raabe D, and Lucke K, Scr Metal Mater 26 (1992) 1221.

    Article  Google Scholar 

  13. Toth L S, Molinari A, and Raabe D, Metal Mater Trans A 28 (1997) 2343.

    Article  Google Scholar 

  14. Fei G, Zhen-Yu L, Hai-Tao L, and Guo-Dong W, J Iron Steel Res Int 20 (2013) 31.

    Article  Google Scholar 

  15. Hu H, Texture 1 (1974) 233.

    Article  Google Scholar 

  16. Li S, Beyerlein I J, and Bourke M A M, Mater Sci Eng A 394 (2005) 66.

    Article  Google Scholar 

  17. Radhakrishnan B, and Sarma G B, Mater Sci Eng A 494 (2008) 73.

    Article  Google Scholar 

  18. Sinclair C W, Robaut F, Maniguet L, Mithieux J-D, Schmitt J-H, and Brechet Y, Adv Eng Mater 5 (2003) 570.

    Article  Google Scholar 

  19. Huh M-Y, Lee J-H, Park S H, Engler O, and Raabe D, Steel Res Int 76 (2005) 797.

    Google Scholar 

  20. Pirgazi H, Ghodrat S, and Kestens L A I, Mater Charact 90 (2014) 13.

    Article  Google Scholar 

  21. Lin F X, Godfrey A, Jensen D J, and Winther G, Mater Charact 61 (2010) 1203.

    Article  Google Scholar 

  22. Dillon S J, and Rohrer G S, J Am Ceram Soc 92 (2009) 1580.

    Article  Google Scholar 

  23. Xu W, Ferry M, Mateescu N, Cairney J M, and Humphreys F J, Mater Charact 58 (2007) 961.

    Article  Google Scholar 

  24. Ferry M, Quadir Md. Z, Zinnia N A, Bassman L, George C, McMahon C, Xu W, and Laws K, Mater Sci Forum 702703 (2012) 469.

  25. Van Houtte P, and Buyser L D, Acta Metall Mater 41 (1993) 323.

    Article  Google Scholar 

  26. Van Houtte P, The ‘‘MTM-FHM’’ and ‘‘MTM-TAY’’ Software System—Version 2, Manual, Department of MME, KLU Leuven, Belgium (1995), p. 5.

    Google Scholar 

  27. Bunge H J, Texture Analysis in Materials Science: Mathematical Methods, Elsevier (ISBN9781483278391).

  28. Rios P R, Siciliano F Jr, Ricardo H, Sandi Z, Plaut R L, and Padilha A F, Mater Res 8 (2005) 225.

    Google Scholar 

  29. Samajdar I, Verlinden B, Van Houtte P, and Vanderschueren D, Mater Sci Eng A 238 (1997) 343.

    Article  Google Scholar 

  30. Sinclair C W, Mithieux J D, Schmitt J H, and Brechet Y, Metall Mater Trans A 36 (2005) 3205.

    Article  Google Scholar 

  31. Wright S I, Nowell M M, and Field D P, Microsci Microanal 17 (2011) 316.

    Article  Google Scholar 

  32. Mitsche S, Poelt P, and Sommitsch C, J Microsci 227 (2007) 267.

    Article  Google Scholar 

  33. Fei G, Zhenyu L, Haitao L, and Guodong W, Mater Charact 75 (2013) 93.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research (IGCAR), Dr. G. Amarendra, Director, Metallurgy and Materials Group (MMG), IGCAR, and Dr. S. Raju, Head, Physical Metallurgy Division, MMG, IGCAR, Kalpakkam for their support and encouragement during this project. Prof. I. Samajdar, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai is sincerely acknowledged for useful discussions and experimental support provided. The authors would also like to acknowledge the experimental support provided by UGC-DAE-CSR Node at Kalpakkam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradyumna Kumar Parida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, P.K., Dasgupta, A., Prasad, D. et al. Application of 3D EBSD Technique to Study Crystallographic Texture in Heavily Cold-Rolled and Recrystallized Modified 9Cr–1Mo Steel. Trans Indian Inst Met 72, 663–672 (2019). https://doi.org/10.1007/s12666-018-1517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1517-3

Keywords

Navigation