Skip to main content
Log in

Metals Extraction from Sulfide Ores with Microorganisms: The Bioleaching Technology and Recent Developments

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nowadays, due to fast global industrial progress and near diminution of high-grade ore reserves, there has been massive call to cost-effectively process the resources of low-grade ores and industrial effluents for metal extraction. However, conventional approaches cannot be used to process such resources due to high capital cost and energy, also causing environmental pollution. Alternatively, bioleaching is highly environmental friendly and economic method to process such resources. Metal recovery from metal sulfide ore is carried out by chemolithotrophic bacteria like Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The same is done by heterotrophic microorganisms in non-sulfide ores. Additionally, for gold and copper extractions, bioleaching is used to extract cobalt, zinc, nickel, and uranium from low-grade ores and industrial effluents. In this review, the fundamental process of bioleaching from low-grade metal sulfide ores are discussed with emphasis on mechanism, types, pathways, techniques, and bioleaching development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acevedo F, Electron J Biotechnol 3 (2000) 1.

    Article  Google Scholar 

  2. Agate A D, World J Microbiol Biotechnol 12 (1996) 487.

    Article  CAS  Google Scholar 

  3. Ahmadi A, Schaffie M Z M and Ranjbar M, Hydrometallurgy 104 (2010) 99.

    Article  CAS  Google Scholar 

  4. Ahoranta S H, Peltola M K, Lakaniemi A M and Puhakka J A, Hydrometallurgy 167 (2017) 163.

    Article  CAS  Google Scholar 

  5. Aishvarya V, Mishra G, Pradhan N. and Ghosh M K, Hydrometallurgy 166 (2016) 130.

    Article  CAS  Google Scholar 

  6. Akcil A and Deveci H, in Geomicrobiology, (ed) Jain S, Khan A, Rai M K (eds), Science Publishers, Enfield (2010) p 101.

    Chapter  Google Scholar 

  7. Anjum F, Bhatti H N and Ambreen A, Asian J Chem 7 (2009a) 5251.

    Google Scholar 

  8. Anjum F, Bhatti H N, Asgher M and Shahid M, J Appl Clay Sci 34 (2010a) 356.

    Article  CAS  Google Scholar 

  9. Anjum F, Bhatti H N, Ghauri M A, Bhatti I A, Asgher M and Asi M R, Afr J Biotechnol 8 (2009) 5038.

    CAS  Google Scholar 

  10. Anjum F, Shahid M and Akcil A, Hydrometallurgy, 117 (2012) 1.

    Article  CAS  Google Scholar 

  11. Apel A W and Dugan R P, in Hydrogen Ion Utilization by Iron Grown Thiobacillus ferrooxidans: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, (eds). Murr E L, Torma A E, Brierley A J, Academic Press, New York (1978) 45.

    Chapter  Google Scholar 

  12. Aslam K M and Aslam M, Nucleus (Karachi) 7 1970 28–36.

    CAS  Google Scholar 

  13. Attia Y A, Elzeky M and Ismail M Int J Miner Process 37 (1993) 61.

    Article  CAS  Google Scholar 

  14. Babel S and Del Mundo Dacera D Waste Manag 26 (2006) 988.

    Article  CAS  Google Scholar 

  15. Babij T and Madgwick J C, Proc Aust Inst Min Met 287 1993 61.

    Google Scholar 

  16. Balci N, Mayer B, Shanks W C and Mandernack K W Geochimica et Cosmochimica Acta, 77 (2012) 335.

    Article  CAS  Google Scholar 

  17. Balci N, Shanks W C, Mayer B and Mandernack K W, Geochimica et Cosmochimica Acta 71 (2007) 3796.

    Article  CAS  Google Scholar 

  18. Bell J M, Philp J C, Kuyukina M S, Ivshina I B, Dunbar S A, Cunningham C J and Anderson P (2004) J Microbiol Methods 58 (2007) 87.

    Article  CAS  Google Scholar 

  19. Bevilaqua D, Lahti H, Suegama P H, Garcia Jr. O, Benedetti A V, Puhakka J A and Tuovinen O H, Hydrometallurgy 138 (2013) 1.

    Article  CAS  Google Scholar 

  20. Bhattacharya S, Das A, Chakrabarti B K and Banerjee P C, Folia Microbiologica 37 (1992) 169.

    Article  Google Scholar 

  21. Bonnefoy V and Holmes D Environ Microbiol 14 (2012) 1597.

    Article  CAS  Google Scholar 

  22. Brandl H, in Biotechnology Set, 2nd ed. (eds) Rehm H J, Reed G Wiley-VCH Verlag GmbH, Weinheim (2001) p 191.

    Google Scholar 

  23. Brierley C and Brierley J, Appl Microbiol Biotechnol 97 (2013) 7543.

    Article  CAS  Google Scholar 

  24. Brierley C L and Briggs A P in Mineral Processing Plant Design, Practice and Control Proceedings (eds) Mular A L, Halbe D N, Barret D J, Society of Mining Engineers, Littleton (2002) p 1540.

    Google Scholar 

  25. Brierley C L Trans Nonferr Met Soc China 18 (2008) 1302.

    Article  CAS  Google Scholar 

  26. Brierley C L Hydrometallurgy 104 (2010) 324.

    Article  CAS  Google Scholar 

  27. Brune K D and Bayer T S Front Microbiol 3 (2012) 203.

    Google Scholar 

  28. Bruynesteyn A, in Proceedings of the 6th Annual Uranium Seminar. SME-AIME, New York (1983) p 59.

  29. Burford E P, Fomina M and Gadd G M, Mineral Mag 67 (2003) 1127.

    Article  CAS  Google Scholar 

  30. Chaerun S K, Alting S A, Mubarok M Z and Sanwani E, in E3S Web of Conferences, 8 (2016) 01029.

  31. Charikinya E and Bradshaw S M Hydrometallurgy 173 (2017) 106.

    Article  CAS  Google Scholar 

  32. Chen H P, Zhou L X, Wang S M and Liang J R, Huan Jing Ke Xue = Huanjing Kexue 30 (2009) 3364.

    CAS  Google Scholar 

  33. Chen L, Li-nan H, Celia M, Jia-liang K, Zheng-shuang H, Jun L and Wen-sheng S, Curr Opin Biotechnol 38 (2016) 150.

    Article  CAS  Google Scholar 

  34. Clark M E, Batty J D, van Buuren C B, Dew D W and Eamon M A Hydrometallurgy 83 (2006) 3.

    Article  CAS  Google Scholar 

  35. Colmer A R and Hinkle M E, Science 106 (1947) 253.

    Article  CAS  Google Scholar 

  36. Das A P, Sukla L B, Pradhan N and Nayak S, Bioresour Technol 102 (2011) 7381.

    Article  CAS  Google Scholar 

  37. Devasia P and Natarajan K A, General Article Resonance (2004)27.

    Google Scholar 

  38. Dhawan N, Safarzadeh M S, Miller J D, Moats M S, Rajamani R K and Lin C L, Miner Eng 35 (2012) 75.

    Article  CAS  Google Scholar 

  39. Diao M, Taran E, Mahler S and Nguyen A V, Adv Colloid Interface Sci 212 (2014) 45.

    Article  CAS  Google Scholar 

  40. Diaz M A, De Ranson I U, Dorta B, Banat I M, Blazquez M L, Gonzalez F, Muñoz J A and Ballester A, Soil Sedim Contamin Int J 24 (2015) 16.

    Article  CAS  Google Scholar 

  41. Druschel G, Borda M. Geochimica et Cosmochimica Acta, 70 (2006) 5246.

  42. du Plessis C A, Batty J D and Dew D W, in (eds) Rawlings D E, Johnson D B, Biomining. Springer, Berlin.

    Google Scholar 

  43. Elzeky M and Attia Y A, Chem Eng J Biochem Eng J 56 (1995) B115.

    Article  CAS  Google Scholar 

  44. Escobar B and Lazo D (2003) Hydrometallurgy 71 (2003) 173.

    Article  CAS  Google Scholar 

  45. Falagán C, Grail B M, and Johnson D B, Miner Eng 106 (2017) 71.

    Article  CAS  Google Scholar 

  46. Feng S, Yang H, Xin Y, Gao K, Yang J, Liu T. and Wang W, Bioresource Technol 129 (2013) 456.

    Article  CAS  Google Scholar 

  47. Feng S, Yang H, Xin Y, Gao K, Yang J, Liu T, Zhang L and Wang W, Bioresource Technol 129 (2013) 456.

    Article  CAS  Google Scholar 

  48. Fu B, Zhou H, Zhang R and Qiu G, Int Biodeter Biodegrad 62 (2008) 109.

    Article  CAS  Google Scholar 

  49. Gadd G M, New Phytologist 124 (1993) 25.

    Article  CAS  Google Scholar 

  50. Gadd G M, Geoderma, 122 (2004) 109.

    Article  CAS  Google Scholar 

  51. Gehrke T, Telegdi J, Thierry D and Sand W, Appl Environ Microbiol 64 (1998) 2743.

    CAS  Google Scholar 

  52. Gericke M, Neale J W and Van Staden P J, J Southern Afr Inst Min Metall 109 (2009) 567.

    CAS  Google Scholar 

  53. Ghassa S, Boruomand Z, Abdollahi H, Moradian M and Akcil A, Sep Purif Technol 136 (2014) 241.

    Article  CAS  Google Scholar 

  54. Gong-Xin C, Guan-Chai W, Jin-Hui L, Geochemica et Cosmochimica Acta 74(11).

    Google Scholar 

  55. Govender E, Bryanl C G and Harrison S T, Biochem Eng J 95 (2015) 86.

    Article  CAS  Google Scholar 

  56. Grewal H S and Kalra K L, Biotechnol Adv 13 (1995) 209.

    Article  CAS  Google Scholar 

  57. Grishin S I, Kachelkin A V and Adamov E V et al., in 17th International Mineral Process Congress 5 (1991) 91.

    Google Scholar 

  58. Hackl R P, Dreisinger D B, Peters E and King J A, Hydrometallurgy 39 (1995) 25.

    Article  CAS  Google Scholar 

  59. Hiroyoshi N, Kitagawa H and Tsunekawa M, Hydrometallurgy 91 (2008) 144.

    Article  CAS  Google Scholar 

  60. Hirt W E and Vestal J R, J Bacteriol 123 (1975) 642.

    CAS  Google Scholar 

  61. Ito A, Takahashi K, Suzuki J and Umita T, J Water Environ Technol 11 (2013) 309.

    Article  Google Scholar 

  62. Johnson D B, FEMS Microbiol Ecol 27 (1998) 307.

    Article  CAS  Google Scholar 

  63. Karavaiko G I, in Biogeotechnology of Metals Manual. (Eds) Karavaiko G I, Rossi G, Agate A D, Groudev S N, Avakyan Z A, Centre for International Projects GKNT, Moscow.

  64. Khalid A M, Anwar M A, Shernsi A M, Niazi G and Akhtar K, in (Eds) Tonna A E, We y J E, Lahhmanan V I, Biohydrometallurgicd Technologies, i. The Minerais, Metals & Materials Society, Warrendale (1993) p 285.

  65. Khan S A, Uddin I, Moeez S and Ahmad A, PloS One, 9 (2014) 107597.

    Article  CAS  Google Scholar 

  66. Kumar C G, Mamidyala S K, Sujitha P, Muluka H and Akkenapally S (2012), Biotechnol Prog 28 (2012) 1507.

    Article  CAS  Google Scholar 

  67. Latorre M, Cortés M P, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C, González M, Parada P, Bobadilla-Fazzini R A and Cambiazo V, Bioresource Technol 218 (2016) 659.

    Article  CAS  Google Scholar 

  68. Lau E V, Gan S, Ng H K and Poh P E, Environ Poll 184 (2014) 640.

    Article  CAS  Google Scholar 

  69. Le L, Tang J, Ryan D and Valix M, Miner Eng 19 (2006) 1259.

    Article  CAS  Google Scholar 

  70. Leahy M J, Davidson M R and Schwarz M P, Anziam J 46 (2005) 439.

    Article  Google Scholar 

  71. Liang C L, Xia J L, Nie Z Y, Yang Y and Mac C Y, Bioresour Technol 110 (2012) 462.

    Article  CAS  Google Scholar 

  72. Liang X and Gadd G M, Microbial Biotechnol 10 (2017) 1199.

    Article  Google Scholar 

  73. Liu M S, Branion R M R and Duncan D W, in Biohydrometall Proc Int Symp (Eds) Norris P R, Kelly, DP p 375.

  74. Liu X R, Zhang H, Yu H L and Zhu Y H, in Solid State Phenomena, Trans Tech Publications, 262 (2017) 75.

  75. Lizama H M, Harlamovs J R, Mckay D J and Dai Z, Miner Eng 18 (2005) 623.

    Article  CAS  Google Scholar 

  76. Lotfalian M, Ranjbar M, Fazaelipoor M H, Schaffie M and Manafi Z, Miner Eng 81 (2015) 52.

    Article  CAS  Google Scholar 

  77. Mac Gregor R A, Trans Inst Min Metall 69 (1966) 162.

    Google Scholar 

  78. McGuire M M, Edwards K J, Banfield J F and Hamers R J, Geochimica et Cosmochimica Acta 65 (2001) 1243.

    Article  CAS  Google Scholar 

  79. Megaw D, Moolman J, Muzadi P and Marcus T, J Southern Afr Inst Min Metall 117 (2017) 779.

    Article  Google Scholar 

  80. Mehrotra A and Sreekrishnan T R, Environ Technol (2017) 1.

  81. Mishra A, Pradhan N, Kar R N, Sukla L B and Mishra B K, Hydrometallurgy 95 (2009) 175.

    Article  CAS  Google Scholar 

  82. Mohanty S, Ghosh S, Nayak S and Das A P, Chemosphere 172 (2017) 302.

    Article  CAS  Google Scholar 

  83. Morin D, Lips A, Pinches T, Huisman J, Frias C, Norberg A and Forssberg E, Hydrometallurgy 83 (2006) 69.

    Article  CAS  Google Scholar 

  84. Munoz J A, Dreisinger D B, Cooper W C and Young S K, Hydrometallurgy 88 (2007) 3.

    Article  CAS  Google Scholar 

  85. Murray C, Platzer W and Petersen J, Miner Eng 100 (2017) 75.

    Article  CAS  Google Scholar 

  86. Mutch L A, Watling H R and Watkin E L J, Hydrometallurgy 104 (2010) 391.

    Article  CAS  Google Scholar 

  87. Natarajan K A, Biotechnol Bioeng 39 (1992) 907.

    Article  CAS  Google Scholar 

  88. Norgate T and Jahanshahi S, Miner Eng 23 (2010) 65.

    Article  CAS  Google Scholar 

  89. Norgate T E and Jahanshahi S, in Proceedings of the 5th Australian Conference on Life Cycle Assessment, Melbourne, November 2006.

  90. Norris P R, Laigle L, Ogden T J and Gould O J, Miner Eng 106 (2017) 7.

    Article  CAS  Google Scholar 

  91. Olson G J, (1994) FEMS Microbiol Lett 119 (1994) 1.

    Article  CAS  Google Scholar 

  92. Olson G J, Brierley J A and Brierley C L, Appl Microbiol Biotechnol 63 (2003) 249.

    Article  CAS  Google Scholar 

  93. Panda S, Akcil A, Mishra S, Erust C, J Hazard Mater 325 (2017) 59.

    Article  CAS  Google Scholar 

  94. Panda S, Akcil A, Pradhan N, Deveci H, Bioresour Technol 196 (2015) 694.

    Article  CAS  Google Scholar 

  95. Panda S, Biswal A, Mishra S, Panda P K, Pradhan N, Mohapatra U, Sukla L B, Mishra B K and Akcil A, Hydrometallurgy 153 (2015) 98.

    Article  CAS  Google Scholar 

  96. Panda S, Mishra S, Rao D S, Pradhan N, Mohapatra U, Angadi S and Mishra B K, Kor J Chem Eng 32 (2015) 667.

    Article  CAS  Google Scholar 

  97. Panda S, Parhi P K, Nayak B D, Pradhan N, Mohapatra U B and Sukla L B, Bioresour Technol 130 (2013b) 332.

    Article  CAS  Google Scholar 

  98. Panda S, Rout P C, Sarangi C K, Mishra S, Pradhan N, Mohapatra U and Mishra B K, Kor J Chem Eng 31 (2014) 452.

    Article  CAS  Google Scholar 

  99. Panda S, Sanjay K, Sukla L B, Pradhan N, Subbaiah T, Mishra B K and Ray S K, Hydrometallurgy 125 (2012) 157.

    Article  CAS  Google Scholar 

  100. Pandey B D and Natarajan K A (Eds) (2015) Microbiology for Minerals, Metals, Materials and the Environment, CRC Press.

    Google Scholar 

  101. Parida B K, Panda S, Misra N, Panda P K and Mishra B K, Geomicrobiology 31(4) (2014) 299.

    Article  CAS  Google Scholar 

  102. Peng G, Tian G, Liu J, Bao Q and Zang L, Desalination 271 (2011) 100.

    Article  CAS  Google Scholar 

  103. Pesic B and Kim I, Metall Mater Trans B 24 (1993) 717.

    Article  Google Scholar 

  104. Petersen J and Dixon D G, Miner Eng 15 (2002) 758.

    Article  Google Scholar 

  105. Pirollo M P, Mariano A P, Lovaglio R B, Costa S G, Walter V, Hausmann R and Contiero J, J Appl Microbiol 105 (2008) 1484.

    Article  CAS  Google Scholar 

  106. Pradhan N, Nathsarma K C, Rao K S, Sukla L B and Mishra B K, Miner Eng 21 (2008) 355.

    Article  CAS  Google Scholar 

  107. Qin W, Yang C, Lai S, Wang J, Liu K and Zhang B, Bioresour Technol 129 (2013) 200.

    Article  CAS  Google Scholar 

  108. Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M and Sun L, Bioresour Technol 102 (2011) 4697.

    Article  CAS  Google Scholar 

  109. Ralph B J, Compr Biotechnol 4 (1985) 201.

    Google Scholar 

  110. Rasoulnia P, Mousavi S M, Rastegar S O and Azargoshasb H, Waste Manag 52 (2016) 309.

    Article  CAS  Google Scholar 

  111. Rawlings, D. E., Ann Rev Microbiol 56 (2002) 65.

    Article  CAS  Google Scholar 

  112. Rawlings D E, Pretrins I M and Woods D R Biotechnol Bioeng Sympos 16 (1986) 281.

    CAS  Google Scholar 

  113. Reddy M S, Naresh B, Leela T, Prashanthi M, Madhusudhan N C, Dhanasri G and Devi P, Bioresource Technol 101 (2010) 7980.

    Article  CAS  Google Scholar 

  114. Rohwerder T, Gehrke T, Kinzler K and Sand W, Appl Microbiol Biotechnol 63 (2003) 239.

    Article  CAS  Google Scholar 

  115. Rojas C, Gutierrez R M and Bruns M A. Appl Soil Ecol 105 (2016) 57.

    Article  Google Scholar 

  116. Rojas-Chapana J A and Tributsch H, FEMS Microbiol Ecology 47 (2004) 19.

    Article  CAS  Google Scholar 

  117. Rossi G, Biohydrometallurgy. McGraw-Hill, Hamburg.

    Google Scholar 

  118. Rossi G, Fuel 72 (1993) 1581.

    Article  CAS  Google Scholar 

  119. Ruan R, Liu X, Zou G, Chen J, Wen J and Wang D, Hydrometallurgy 108 (2011) 130.

    Article  CAS  Google Scholar 

  120. Saitoh N, Nomura T and Konishi Y, in Solid State Phenomena, Trans Tech Publications, 262 (2017) 237.

  121. Sajjad W, Bhatti T M, Hasan F and Shah A A, Int J Biosci 6 (2015) 62.

    Article  Google Scholar 

  122. Sajjad W, Bhatti T M, Hasan F, Khan S, Badshah M, Naseem A A and Shah A A. Pak J Bot 48 (2016) 1253.

    CAS  Google Scholar 

  123. Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Ali B, Rafiq M, Geomicrobiology 35 (2018a) 580.

    Article  Google Scholar 

  124. Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Khan S, Extremophile 22 (2018b) 851.

    Article  CAS  Google Scholar 

  125. Sand W, Gehrke T and Hallmann R, Appl Microbiol Biotechnol 43 (1995) 961.

    Article  CAS  Google Scholar 

  126. Sand W, Gehrke T, Jozsa P G and Schippers A, Hydrometallurgy 59 (2001) 159.

    Article  CAS  Google Scholar 

  127. Schippers A, Hedrich S, Vasters J, Drobe M, Sand W and Willscher S, Adv Biochem Eng Biotechnol 141 (2014) 1.

    CAS  Google Scholar 

  128. Schippers A and Sand W, Appl Environ Microbiol 65 (1999) 319.

    CAS  Google Scholar 

  129. Schippers A, in (Eds) Amend J P, Edwards K J, Lyons T W, Sulfur Biogeochemistry: Past and Present. Special paper 379. Geological Society of America, Boulder.

  130. Schippers A, in Microbial Processing of Metal Sulfides (2007) p 3.

  131. Schippers A, in Solid State Phenomena, Trans Tech Publications, 262, p 61.

  132. Schippers A, Hedrich S, Vasters J, Drobe M, Sand W and Willscher S, in Geobiotechnology, Springer, Berlin (2013) p 1.

  133. Schippers A, Jozsa P and Sand W, Appl Environ Microbiol 62 (1996) 3424.

    CAS  Google Scholar 

  134. Sethurajan M, Lens P N, Rene E R, Van de Vossenberg J, Huguenot D, Horn H A and Van Hullebusch E D, J Chem Technol Biotechnol 92 (2017) 512.

    Article  CAS  Google Scholar 

  135. Silverman M P, J Bacteriol 94 (1967) 1046.

    CAS  Google Scholar 

  136. Silverman M P, Rogoff M H and Wender I, Appl Microbiol 9 (1961) 491.

    CAS  Google Scholar 

  137. Singer P C and Stumm W, Science 167 (1970) 1121.

    Article  CAS  Google Scholar 

  138. Smart R S C, Jasieniak M, Prince K E and Skinner W M, Miner Eng 13 (2000) 857.

    Article  CAS  Google Scholar 

  139. Steudel R, Ind Eng Chem Res 35 (1996) 1417.

    Article  CAS  Google Scholar 

  140. Sugio T, Domatsu C, Munakata O, Tano T and Imai K, Appl Environ Microbiol 49 (1985) 1401.

    CAS  Google Scholar 

  141. Szubert A, Łupiński M and Sadowski Z, Physicochem Problems Miner Process 40 (2006) 211.

    CAS  Google Scholar 

  142. Tang J, He J, Liu T, Xin X and Hu H, Chemosphere 189 (2017) 599.

    Article  CAS  Google Scholar 

  143. Temple K L and Colmer A R, J Bacteriol 62 (1951) 605.

    CAS  Google Scholar 

  144. Thomas J E, Skinner W M, and Smart R S C, Geochimica et Cosmochimica Acta 65 (2001) 1.

    Article  CAS  Google Scholar 

  145. Torma A E and Olsen T M Appl Biochem Biotechnol 18 (1988) 341.

    Article  CAS  Google Scholar 

  146. Torma A E, Revue Canadienne de Biologie 30 (1971) 209.

    CAS  Google Scholar 

  147. Torma A E, Walden C C, Duncan D W and Branion R M R, Biotechnol Bioeng 14 (1972) 777.

    Article  CAS  Google Scholar 

  148. US Patent No. 6110253 (2000) High Temperature Heap Bioleaching Process.

  149. Vainshtein M, Abashina T, Bykov A, Repina A and Kaparullina E, World J Microbiol Biotechnol 31 (2015) 535.

    Article  CAS  Google Scholar 

  150. Valix M and Loon L O, Miner Eng 16 (2003) 193.

    Article  CAS  Google Scholar 

  151. Vaughan D J and Craig J R, Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge.

    Google Scholar 

  152. Vera M, Schippers A and Sand W, Appl Microbiol Biotechnol 97 (2013) 7529.

    Article  CAS  Google Scholar 

  153. Von Wahl S, Bergwirtschaft Band I. Verlag Glückauf, Essen (1990).

    Google Scholar 

  154. Wang J and Chen C, Biotechnol Adv 27 (2009) 195.

    Article  CAS  Google Scholar 

  155. Wichlacz P C, Unz R F and Langworthy T A, Int J Syst Bacteriol 36 (1986) 197.

    Article  Google Scholar 

  156. Wu B, Wen J K, Chen B W, Yao G C and Wang D Z, Rare Met 33 (2014) 622.

    Article  CAS  Google Scholar 

  157. Xu T J, Ramanathan T and Ting Y P, Biotechnol Rep 3 (2014) 8.

    Article  Google Scholar 

  158. Xu Y and Schoonen M A, Am Mineral 85 (2000) 543.

    Article  CAS  Google Scholar 

  159. Xu Y, Zhang C, Zhao M, Rong H, Zhang K and Chen Q, (2017)Chemosphere 168 (2017) 1152.

    Article  CAS  Google Scholar 

  160. Yang Z, Zhang Z, Chai L, Wang Y, Liu Y and Xiao R, J Hazard Mater 301 (2016) 145.

    Article  CAS  Google Scholar 

  161. Yu H, Liu X, Shen J and Chi D, in AIP Conference Proceedings, AIP Publishing 1820 (2017) 030006.

  162. Yu R, Shi L, Gu G, Zhou D, You L, Chen M and Zeng W, Bioresour Technol 162 (2014) 300.

    Article  CAS  Google Scholar 

  163. Yuehua H, Guanzhou Q, Jun W, and Dianzuo W, Hydrometallurgy 64 (2002) 81.

    Article  Google Scholar 

  164. Zammit C M, Mangold S, Jonna V R, Mutch L A, Watling H R, Dopsonm M and Watkin E L J, Appl Microbiol Biotechnol 93 (2012) 319.

    Article  CAS  Google Scholar 

  165. Zeng J, Gou M, Tang Y Q, Li G Y, Sun Z Y and Kida K, Bioresour Technol 218 (2016) 859.

    Article  CAS  Google Scholar 

  166. Zeng W, Qiu G, Zhou H, Peng J, Chen M, Tan S N and Zhang Y, Bioresour Technol 101 (2010) 7068.

    Article  CAS  Google Scholar 

  167. Zeng X, Twardowska I, Wei S, Sun L, Wang J, Zhu J and Cai J, J Hazard Mater 288 (2015) 51.

    Article  CAS  Google Scholar 

  168. Zhang R Y, Hedrich S and Schippers A, in Solid State Phenomena, Trans Tech Publications 262,(2017) p 88.

  169. Zhou H B, Zeng W M, Yang Z F, Xie Y J and Qiu G Z, Bioresour Technol 100 (2009) 515.

    Article  CAS  Google Scholar 

  170. Zhu W, Xia J L, Yang Y, Nie Z Y, Zheng L, Ma C Y and Qiu G Z, Bioresour Technol 102 (2011) 3877.

    Article  CAS  Google Scholar 

  171. Zhu Y, Zeng G, Zhang P, Zhang C, Ren M, Zhang J, and Chen M, Bioresour Technol 142 (2013) 530.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was sponsored by CAS-TWAS President’s Fellowship for international Ph.D. students to WS and partially by the Natural Science Foundation of China (41572352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasim Sajjad.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad, W., Zheng, G., Din, G. et al. Metals Extraction from Sulfide Ores with Microorganisms: The Bioleaching Technology and Recent Developments. Trans Indian Inst Met 72, 559–579 (2019). https://doi.org/10.1007/s12666-018-1516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1516-4

Keywords

Navigation