Skip to main content
Log in

An Efficient Approach to Optimize Wear Behavior of Cryogenic Milling Process of SS316 Using Regression Analysis and Particle Swarm Techniques

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work is an endeavor to carry out a machining using LN2 in face milling operations and to produce the milling samples with excellent wear resistance property. The output response (wear rate) depends on appropriate choice of speed, feed, and depth of cut. The experimental data are conducted (collected) for SS316 as per central composite design. The present work exemplifies an employment of conventional and nonconventional strategies for optimizing the milling factors of cryogenically treated samples in face milling to achieve the desired wear (response). The results of nonlinear regression (desirability strategy) and nonconventional [particle swarm optimization, (PSO)] optimization techniques are compared, and PSO is found to outperform the desirability function approach. The present work even highlights the effect and results of LN2 on wear in contrast to wet condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cambri B M, J Mat Processing Technology 56 (1996) 786.

    Google Scholar 

  2. Shaw M C, Pigott J D, and Richardson L P, Am Soc. Mech. Eng. 71 (1951) 45.

    Google Scholar 

  3. Cassin C, and Boothroyd G, J Mech Eng Sci 7 (1965) 67.

    Google Scholar 

  4. Baradie M A, J Mater Process Technol 56 (1996b) 798.

    Article  Google Scholar 

  5. Pusavec F, Kramar D, Krajnik P, and Kopac J, J Cleaner Prod 18 (2010) 1211.

    Google Scholar 

  6. Hong S Y, and Broomer M, Clean Prod Process 2 (2000) 157.

    Google Scholar 

  7. Hong S Y, Ding Y, and Jeong J, Mach Sci Technol 6 (2002) 235.

    Google Scholar 

  8. Bordin A, Bruschi S, Ghiotti A, and Bariani P F, Wear 328 (2015) 89.

    Article  Google Scholar 

  9. Jerold B D, and Kumar M P, Cryogenics 52 (2012) 569.

    Google Scholar 

  10. Umbrello D, J Adv Manuf Technol 64 (2015) 633.

    Google Scholar 

  11. Umbrello D, Int J Adv Manuf Technol 54 (2011) 887.

    Google Scholar 

  12. Klocke F, Settineri L, Lung D, Priarone PC, and Arft M, Wear 302 (2013) 1136.

  13. Tandon V, Mounayri H E, and Kishawy H, Int J Mach Tools Manuf 42 (2002) 595.

    Google Scholar 

  14. Basker N, Asokan P, Saravanna R, and Probhaharan G, Int J Adv Manuf Technol 25 (2005) 10781088.

    Google Scholar 

  15. Mukherjee I, and Kumar R P, Comput Ind Eng 50 (2006) 15.

    Google Scholar 

  16. Raja S B, and Baskar N, Expert Syst Appl 39 (2012) 5982.

    Google Scholar 

  17. Julie Z, Joseph C, and Daniel K, J Mater Process Technol 184 (2007) 233.

    Google Scholar 

  18. Rashmi L M, Karthik Rao M C, Arun Kumar S, Shrikantha S Rao, and D’Souza R J, J Braz Soc Mech Sci Eng 39 (2016) 3541.

    Google Scholar 

  19. Reddy S K, and Rao P V, Int J Adv Manuf Technol 28 (2006) 463.

    Google Scholar 

  20. Rashmi L M, Karthik R M C, Arun Kumar S, Shrikantha S R, D’Souza R J, Mater Manuf Process 33 (2017) 1406.

    Google Scholar 

  21. Phadke M S, Quality engineering using robust design, Prentice Hall, New Jersey (1989).

    Google Scholar 

  22. Ross P J, Taguchi techniques for quality engineering, McGraw-Hill, New York (1996).

    Google Scholar 

  23. Montgomery D C, Design and analysis of experiments, Wiley, New York (2008).

    Google Scholar 

  24. Manjunath P, Krishna P, and Parappagoudar B, Int J Adv Technol (2016), http://dx.doi.org/10.1007/s00170-016-8416-8.

  25. Manjunath P, Krishna P, and Parappagoudar B, Aust J Mech Eng (2015) http://dx.doi.org/10.1080/14484846.2015.1093231.

  26. Rashmi L M, Karthik R M C, Arun Kumar S, Shrikantha S R, and Mervin A H, Int J Precis Eng Manuf 19 (2018) 695.

    Google Scholar 

  27. Manjunath P, Arun Kumar S, and Parappagoudar B, J Manuf Process 32 (2018) 199.

    Google Scholar 

  28. Kovacevic R, Cherukuthota C, and Mzurkiewiez M, Int J Mach Tools Manuf 35 (1995) 1459.

  29. Dhar N R, Paul S, and Chattopadhyay A B, Wear 249 (2002b) 932.

  30. Chen Z, Atmadi A, Stephennon D A, and Liang S Y, Ann CIRP 49 (2000) 53.

    Google Scholar 

  31. Yakup Y, and Muammer N, Int J Mach Tool Manuf 48 (2008) 947.

    Google Scholar 

  32. Barry J, and Byrne G, Ann CIRP 51 (2002) 65.

    Google Scholar 

Download references

Acknowledgements

I would like to thank NITK, Surathkal, for providing facilities to carry out my research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi L. Malghan.

Appendix: Test Cases

Appendix: Test Cases

SL. no.

Process variables

Experimental

S

F

D

CT

Wear rate

Surface roughness

1

2100

465

1.1

− 1

2.27

2.13

2

2800

379

0.7

0

2.41

2.62

3

1700

364

0.9

1

1.93

1.91

4

1200

420

1.3

1

1.74

1.73

5

2000

457

0.8

0

2.24

2.09

6

1500

500

1.2

1

1.99

1.83

7

2600

440

0.7

1

1.13

2.47

8

1285

520

1.3

1

0.62

1.71

9

2300

500

0.8

0

2.13

2.26

10

1392

390

0.9

1

1.66

1.77

11

2500

485

1

− 1

2.32

2.35

12

1850

510

1.4

1

2.01

1.99

13

2720

400

1.1

− 1

2.66

2.56

14

2200

380

0.8

0

2.17

2.22

15

2450

510

0.6

− 1

2.38

2.31

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik Rao, M.C., Malghan, R.L., ArunKumar, S. et al. An Efficient Approach to Optimize Wear Behavior of Cryogenic Milling Process of SS316 Using Regression Analysis and Particle Swarm Techniques. Trans Indian Inst Met 72, 191–204 (2019). https://doi.org/10.1007/s12666-018-1473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1473-y

Keywords

Navigation