Skip to main content
Log in

Dislocation Interaction and V-Shaped Growth of the Distorted Structure During Nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-Coated Copper: A Molecular Dynamics Simulation-Based Study

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the deformation behavior of Cu20Ni20Al20Co20Fe20 high-entropy alloy-coated single-crystal Cu substrate which undergoes nanoindentation has been investigated under molecular dynamic simulation with embedded-atom method potential. The dynamic structural evolutions under nanoindentation are presented using centrosymmetry parameter analysis, common neighbor analysis and radial distribution function plots. In the initial level of nanoindentation, the interface deformation is greatly confronted by the confined V-shaped growth of the distorted structure. But the sudden discrete dislocation burst account for avalanche break-down in the interface layer, which further get influenced by the evolution of multiple dislocation nodes that is significantly governed by core spreading, extended misfit dislocation generation and relative rotation. In the meanwhile, the subsequent generation of dislocation locks, complicated multiple dislocation loops, dislocation junctions and limited cross-slip in wide stacking faults (SFs) hasten the work hardening and in turn slows down the deformation progress. On the other hand, the intermediate appearance of narrow SFs and slip bands significantly reduces the work hardening rate that increases the optimum fracture strain value of the specimen. Moreover, the overall increase in dislocation density and dislocation length leads to a significant growth in dislocation sources which leads to forest hardening in the later stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Francis R, Corrosion of Copper and its Alloys: A Practical Guide for Engineers, Nace Press, Houston, TX (2010) p 369.

    Google Scholar 

  2. Budinski K G, and Budinski M K, Engineering materials, Nature (2009) p 28.

    Google Scholar 

  3. Gao M C, Yeh J W, Liaw P K, and Zhang Y (eds), High-Entropy Alloys: Fundamentals and Applications, Springer, Berlin (2016) p 524.

    Google Scholar 

  4. Buckley D H, Surface Effects in Adhesion, Friction, Wear, and Lubrication, Elsevier, Oxford (1981) p 643.

    Google Scholar 

  5. Li W, and Li D Y, Appl Surf Sci 240 (2005) 388.

    Google Scholar 

  6. Li W, and Li D Y, Acta Mater 54 (2006) 445.

    Google Scholar 

  7. Zum Gahr K H, Microstructure and Wear of Materials, Elsevier, Oxford (1987) p 560.

    Google Scholar 

  8. Jien-Wei Y, Ann Chim Sci Mat 31 (2006) 633.

    Google Scholar 

  9. Xu X, Luo X, Zhuang H, Li W, and Zhang B, Mater Lett 57 (2003) 3987.

    Google Scholar 

  10. Tuck J R, Korsunsky A M, Davidson R I, Bull S J, and Elliott D M, Surf Coat Technol 127 (2000) 1.

    Google Scholar 

  11. Li Q, Huang C, Liang Y, Fu T, and Peng T, J Nanomater 2016 (2016) 1.

    Google Scholar 

  12. Hsu H C, Chu L M, Chang W Y, Chen Y F, Chien J H, Fu S L, Ju S P, and Feng W J, J Mater Sci: Mater Electron 24 (2013) 3594.

    Google Scholar 

  13. Scott D A, Archaeometry 28 (1986) 33.

    Google Scholar 

  14. Rao K P, Sankar A, Rafi H K, Ram G J, and Reddy G M, Int J Adv Manuf Technol 65 (2013) 755.

    Google Scholar 

  15. Singh B P, Jena B K, Bhattacharjee S, and Besra L, Surf Coat Technol 232 (2013) 475.

    Google Scholar 

  16. Lebbai M, Szeto W K, and Kim J K, Optimization of black oxide coating thickness as adhesion promoter for copper substrate, In Electronic Materials and Packaging, 2000. (EMAP 2000), International Symposium on, IEEE, China (2000) 206.

  17. Lebbai M, Kim J K, Szeto W K, Yuen M M, and Tong P, J Electron Mater 32 (2003) 558.

    Google Scholar 

  18. Borisov A M, Savushkina S V, Vinogradov A V, Tkachenko N V, Vostrikov V G, Romanovsky E A, Polyansky M N, and Ashmarin A A, J Surf Invest X-ray Synchrotron Neutron Tech 8 (2014) 338.

    Google Scholar 

  19. Das S, Kumar D S, and Bhaumik S, Appl Therm Eng 96 (2016) 555.

    Google Scholar 

  20. Raza M A, Rehman Z U, Ghauri F A, Ahmad A, Ahmad R, and Raffi M, Thin Solid Films 620 (2016) 150.

    Google Scholar 

  21. Won M S, Penkov O V, and Kim D E, Carbon 54 (2013) 472.

    Google Scholar 

  22. Wlasny I, Dabrowski P, Rogala M, Pasternak I, Strupinski W, Baranowski J M, and Klusek Z, Corros Sci 92 (2015) 69.

    Google Scholar 

  23. Yan H, Zhang J, Zhang P, Yu Z, Li C, Xu P, and Lu Y, Surf Coat Technol 232 (2013) 362.

    Google Scholar 

  24. Cheng L, Xiong X, and Dong S J, Trans Nonferrous Met Soc China 21 (2011) 317.

    Google Scholar 

  25. Wu C L, Zhang S, Zhang C H, Zhang H, and Dong S Y, Surf Coat Technol 315 (2017) 368.

    Google Scholar 

  26. Wu C L, Zhang S, Zhang C H, Chen J, and Dong S Y, Opt Laser Technol 94 (2017) 68.

    Google Scholar 

  27. Rao A V, Latthe S S, Mahadik S A, and Kappenstein C, Appl Surf Sci 257 (2011) 5772.

    Google Scholar 

  28. Huang Y, Sarkar D K, Gallant D, and Chen X G, Appl Surf Sci 282 (2013) 689.

    Google Scholar 

  29. Wang P, Zhang D, Qiu R, Wan Y, and Wu J, Corros Sci 80 (2014) 366.

    Google Scholar 

  30. Wang P, Zhang D, Qiu R, and Wu J, Corros Sci 83 (2014) 317.

    Google Scholar 

  31. Chang S Y, and Chen D S, Appl Phys Lett 94 (2009) 231909.

    Google Scholar 

  32. Chang S Y, Chen M K, and Chen D S, J Electrochem Soc 156 (2009) G37.

    Google Scholar 

  33. Chen D S, Chen M K, and Chang S Y, ECS Trans 19 (2009) 751.

    Google Scholar 

  34. Tsai M H, Wang C W, Tsai C W, Shen W J, Yeh J W, Gan J Y, and Wu W W, J Electrochem Soc 158 (2011) H1161.

    Google Scholar 

  35. Tsai M H, Wang C W, Lai C H, Yeh J W, and Gan J Y, Appl Phys Lett 92 (2008) 052109.

    Google Scholar 

  36. Tsai M H, Yeh J W, and Gan J Y, Thin Solid Films 516 (2008) 5527.

    Google Scholar 

  37. Chang S Y, Wang C Y, Li C E, and Huang Y C, Nanosci Nanotechnol Lett 3 (2011) 289.

    Google Scholar 

  38. Chang S Y, Wang C Y, Chen M K, and Li C E, J Alloys Compd 509 (2011) L85.

    Google Scholar 

  39. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.

    Google Scholar 

  40. Yeh J W, Chen Y L, Lin S J, and Chen S K, Mater Sci Forum 560 (2007) 1.

    Google Scholar 

  41. Babu B S, Kumaraswamy A, and Prasad B A, Trans Indian Inst Met 69 (2016) 759.

    Google Scholar 

  42. Beegan D, Chowdhury S, and Laugier M T, Surf Coat Technol 176 (2003) 124.

    Google Scholar 

  43. Saha R, and Nix W D, Acta Mater 50 (2002) 23.

    Google Scholar 

  44. SridharBabu B, Kumaraswamy A, and AnjaneyaPrasad B, Trans Indian Inst Met 68 (2015) 143.

    Google Scholar 

  45. Meraj M, and Pal S, Trans Indian Inst Met 69 (2016) 277.

    Google Scholar 

  46. Reddy K V, and Pal S, Trans Indian Inst Met 71 (2018) 1721.

    Google Scholar 

  47. Sun S, Peng X, Xiang H, Huang C, Yang B, Gao F, and Fu T, Ceram Int 43 (2017) 16313.

    Google Scholar 

  48. Chang S W, Nair A K, and Buehler M J, Philos Mag Lett 93 (2013) 196.

    Google Scholar 

  49. Feng C, Peng X, Fu T, Zhao Y, Huang C, and Wang Z, Phys E 87 (2017) 213.

    Google Scholar 

  50. Chen T, Tan L, Lu Z, and Xu H, Acta Mater 138 (2017) 83.

    Google Scholar 

  51. Kim Y C, Gwak E J, Ahn S M, Jang J I, Han H N, and Kim J Y, Acta Mater 138 (2017) 52.

    Google Scholar 

  52. Gao Y, Brodyanski A, Kopnarski M, and Urbassek H M, Comput Mater Sci 103 (2015) 77.

    Google Scholar 

  53. Shi J, Chen J, Sun K, Sun J, Han J, and Fang L, Mater Chem Phys 198 (2017) 177.

    Google Scholar 

  54. Fang T H, Jian S R, and Chuu D S, Jpn J Appl Phys 41 (2002) L1328.

    Google Scholar 

  55. Wolf D, Yamakov V, Phillpot S R, Mukherjee A, and Gleiter H, Acta Mater 53 (2005) 1.

    Google Scholar 

  56. Chang S Y, Li C E, Huang Y C, Hsu H F, Yeh J W, and Lin S J, Sci Rep 4 (2014) 4162.

    Google Scholar 

  57. Chang S Y, Lin S Y, Huang Y C, and Wu C L, Surf Coat Technol 204 (2010) 3307.

    Google Scholar 

  58. Lin S Y, Chang S Y, Huang Y C, Shieu F S, and Yeh J W, Surf Coat Technol 206 (2012) 5096.

    Google Scholar 

  59. Lin S Y, Chang S Y, Chang C J, and Huang Y C, Entropy 16 (2013) 405.

    Google Scholar 

  60. Nosé S, J Chem Phys 81 (1984) 511.

    Google Scholar 

  61. Hoover W G, Phys Rev A 31 (1985) 1695.

    Google Scholar 

  62. Han J, Sun J, Han Y, Zhu H, and Fang L, Metals 8 (2018) 344.

    Google Scholar 

  63. Chen J, Shi J, Wang Y, Sun J, Han J, Sun K, and Fang L, RSC Adv 8 (2018) 12597.

    Google Scholar 

  64. Liu Y, Duan Y, and Zhang J, Nanomaterials 8 (2018) 695.

    Google Scholar 

  65. Sadat M R, Bringuier S, Muralidharan K, Frantziskonis G, and Zhang L, Comput Mater Sci 142 (2018) 227.

    Google Scholar 

  66. Jiapeng S, Cheng L, Han J, Ma A, and Fang L, Sci Rep 7 (2017) 10282.

    Google Scholar 

  67. Ghaffarian H, Taheri A K, Ryu S, and Kang K, Curr Appl Phys 16 (2016) 1015.

    Google Scholar 

  68. Fang T H, Weng C I, and Chang J G, Mater Sci Eng: A 357 (2003) 7.

    Google Scholar 

  69. Szlufarska I, Kalia R K, Nakano A, and Vashishta P, Phys Rev B 71 (2005) 174113.

    Google Scholar 

  70. Liu C L, Fang T H, and Lin J F, Mater Sci Eng: A 452 (2007) 135.

    Google Scholar 

  71. Wang C T, Jian S R, Jang J S C, Lai Y S, and Yang P F, Appl Surf Sci 255 (2008) 3240.

    Google Scholar 

  72. Gao Y, Ruestes C J, and Urbassek H M, Comput Mater Sci 90 (2014) 232.

    Google Scholar 

  73. Remington T P, Ruestes C J, Bringa E M, Remington B A, Lu C H, Kad B, and Meyers M A, Acta Mater 78 (2014) 378.

    Google Scholar 

  74. Huang C C, Chiang T C, and Fang T H, Appl Surf Sci 353 (2015) 494.

    Google Scholar 

  75. Zhao Y, Peng X, Fu T, Huang C, Feng C, Yin D, and Wang Z, Appl Surf Sci 382 (2016) 309.

    Google Scholar 

  76. Huang C, Peng X, Fu T, Zhao Y, Feng C, Lin Z, and Li Q, Appl Surf Sci 392 (2017) 215.

    Google Scholar 

  77. Plimpton S, J Comput Phys 117 (1995) 1.

    Google Scholar 

  78. Stukowski A, Modell Simul Mater Sci Eng 18 (2009) 015012.

    Google Scholar 

  79. Zhou X W, Johnson R A, and Wadley H N G, Phys Rev B 69 (2004) 144113.

    Google Scholar 

  80. Xie L, Brault P, Thomann A L, and Bauchire J M, Appl Surf Sci 285 (2013) 810.

    Google Scholar 

  81. Xie L, Brault P, Thomann A L, Yang X, Zhang Y, and Shang G, Intermetallics 68 (2016) 78.

    Google Scholar 

  82. Sharma A, Singh P, Johnson D D, Liaw P K, and Balasubramanian G, Sci Rep 6 (2016) 31028.

    Google Scholar 

  83. Daw M S, Foiles S M, and Baskes M I, Mater Sci Rep 9 (1993) 251.

    Google Scholar 

  84. Brink T, Koch L, and Albe K, Phys Rev B 94 (2016) 224203.

    Google Scholar 

  85. Meraj M, and Pal S, IOP Conf Ser: Mater Sci Eng 115 (2016) 012019.

    Google Scholar 

  86. Zhang Y H, Zhuang Y, Hu A, Kai J J, and Liu C T, Scr Mater 130 (2017) 96.

    Google Scholar 

  87. Koch L, Granberg F, Brink T, Utt D, Albe K, Djurabekova F, and Nordlund K, J Appl Phys 122 (2017) 105106.

    Google Scholar 

  88. Afkham Y, Bahramyan M, Mousavian R T, and Brabazon D, Mater Sci Eng: A 698 (2017) 143.

    Google Scholar 

  89. Li J, Fang Q, Liu B, Liu Y, and Liu Y, RSC Adv 6 (2016) 76409.

    Google Scholar 

  90. Maiti S, and Steurer W, Acta Mater 106 (2016) 87.

    Google Scholar 

  91. Hertz H, J Reine Angew Math 92 (1882) 156.

    Google Scholar 

  92. Li Y, Goyal A, Chernatynskiy A, Jayashankar J S, Kautzky M C, Sinnott S B, and Phillpot S R, Mater Sci Eng: A 651 (2016) 346.

    Google Scholar 

  93. Zhu P Z, and Fang F Z, Appl Phys A 108 (2012) 415.

    Google Scholar 

  94. Fu T, Peng X, Chen X, Weng S, Hu N, Li Q, and Wang Z, Sci Rep 6 (2016) 35665.

    Google Scholar 

  95. Juday R, Silva E M, Huang J Y, Caldas, P G, Prioli R, and Ponce F A, J Appl Phys 113 (2013) 183511.

    Google Scholar 

  96. Liu Q, Deng L, and Wang X, Mater Sci Eng: A 676 (2016) 182.

    Google Scholar 

  97. Steck E (Ed.), Plasticity of metals: experiments, models, computation, Wiley-VCH, Germany (2001) p 426.

    Google Scholar 

  98. Dieter G E, and Bacon D J, Mechanical metallurgy, McGraw-hill, New York City (1986) p 767.

    Google Scholar 

  99. Cottrell A H, Lond Edinbu Dublin Philos Mag J Sci 43 (1952) 645.

    Google Scholar 

  100. Shao S, Wang J, Beyerlein I J, and Misra A, Acta Mater 98 (2015) 206.

    Google Scholar 

  101. Li J, Van Vliet K J, Zhu T, Yip S, and Suresh S, Nature 418 (2002) 307.

    Google Scholar 

  102. Kelchner C L, Plimpton S J, and Hamilton J C, Phys Rev B 58 (1998) 11085.

    Google Scholar 

  103. Jian W W, Cheng G M, Xu W Z, Koch C C, Wang Q D, Zhu Y T, and Mathaudhu S N, Appl Phys Lett 103 (2013) 133108.

    Google Scholar 

  104. Meraj M, Dutta K, Bhardwaj R, Yedla N, Karthik V, and Pal S, J Mater Eng Perform 26 (2017) 5197.

    Google Scholar 

  105. Matthews J W, and Blakeslee A E, J Cryst Growth 27 (1974) 118.

    Google Scholar 

  106. Tsuzuki H, Branicio P S, and Rino J P, Acta Mater 57 (2009) 1843.

    Google Scholar 

  107. Yue T M, Xie H, Lin X, Yang H O, and Meng G H, J Alloys Compd 587 (2014) 588.

    Google Scholar 

  108. Yedla N, and Ghosh S, Intermetallics 80 (2017) 40.

    Google Scholar 

  109. Yaghoobi M, and Voyiadjis G Z, Comput Mater Sci 111 (2016) 64.

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the computer center of National Institute of Technology Rourkela for providing high-performance computing facility (HPCF) required for performing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D.K., Meraj, M., BadJena, S.K. et al. Dislocation Interaction and V-Shaped Growth of the Distorted Structure During Nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-Coated Copper: A Molecular Dynamics Simulation-Based Study. Trans Indian Inst Met 72, 167–180 (2019). https://doi.org/10.1007/s12666-018-1471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1471-0

Keywords

Navigation