Transactions of the Indian Institute of Metals

, Volume 72, Issue 1, pp 111–121 | Cite as

Microstructural Characterization of Equiatomic CrFeNbNiV Alloy

  • A. Saikumaran
  • R. MythiliEmail author
  • S. Saroja
  • V. Srihari
Technical Paper


This paper presents the results of an experimental study to investigate the structural and microchemical characteristics of an equiatomic CrFeNbNiV alloy. XRD analysis of CrFeNbNiV alloy, revealed a predominant NbCrNi type HCP Laves phase conjoined with two minor tetragonal and BCC phases. Detailed microstructural investigations using electron microscopy techniques also substantiated the presence of the above mentioned phases. The structure of Laves phase in this alloy is determined ab initio for the first time using Precession Electron Diffraction technique which was in agreement with the Rietveld analysis of XRD pattern. The formation of intermetallic Laves phase was understood based on theoretical phase stability and average d- orbital energy level \(\overline{\text{Md}}\) value calculations. The alloy in the ‘as cast’ condition exhibited a very high value of hardness (~ 1500 Hv). No change in the microstructure and hardness was observed on annealing at high temperatures even up to 1373 K (1100 °C).


High entropy alloy Precession electron diffraction Automated diffraction tomography Microstructure Laves phase Phase stability 



Authors would like to thank Dr. G. Amarendra, Director, Metallurgy and Materials Group, and Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their sustained support and encouragement in the pursuit of this work. Mr. Saikumaran expresses his deep sense of gratitude to HBNI for funding this project. The authors also thank UGC-DAE consortium for SEM facilities, Dr. N. V. Chandrasekar and Mr. Meenakshi sundaram for their help in alloy melting, Dr. S. Kalavathy and Mr. Irshad. K. Abbas for the XRD experiments.

Compliance with Ethical Standards

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.


  1. 1.
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.CrossRefGoogle Scholar
  2. 2.
    Murty B S, Yeh J-W, and Ranganathan S, High-entropy Alloys, Butterworth-Heinemann, Oxford (2014).Google Scholar
  3. 3.
    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Lu Z P, Prog Mater Sci, 61 (2014) 1.CrossRefGoogle Scholar
  4. 4.
    Tsai M-H, and Yeh J-W, Mater Res Lett 2 (2014) 107.CrossRefGoogle Scholar
  5. 5.
    Yeh J-W, Jom 65 (2013) 1759.CrossRefGoogle Scholar
  6. 6.
    Huang Y-S, Recent Patents Mater Sci 2 (2009) 154.CrossRefGoogle Scholar
  7. 7.
    Cantor B, Chang I, Knight P, and Vincent A, Mater Sci Eng A A 375 (2004) 213.CrossRefGoogle Scholar
  8. 8.
    Lin C-M, Tsai H-L, and Bor H-Y, Intermetallics 18 (2010) 1244.CrossRefGoogle Scholar
  9. 9.
    Ng C, Guo S, Luan J, Shi S, and Liu CT, Intermetallics 31 (2012) 165.CrossRefGoogle Scholar
  10. 10.
    Ke G-Y, Chen S-K, Hsu T, and Yeh J-W, Annales de chimie Lavoisier 31 (2006) 669.CrossRefGoogle Scholar
  11. 11.
    Guo S, Ng C, and Liu CT, J Alloy Compd 557 (2013) 77.CrossRefGoogle Scholar
  12. 12.
    Zhou Y, Zhang Y, Wang F, Wang Y, and Chen G, J Alloy Compd 466 (2008) 201.CrossRefGoogle Scholar
  13. 13.
    Zhou Y, Zhang Y, Wang Y, and Chen G, Mater Sci Eng A 454 (2007) 260.CrossRefGoogle Scholar
  14. 14.
    Zhou Y, Zhang Y, Wang F, and Chen G, Appl Phys Lett 92 (2008) 241917.CrossRefGoogle Scholar
  15. 15.
    Wu Y, Cai Y, Wang T, Si J, Zhu J, Wang Y, and Hui X, Mater Lett 130 (2014) 277.CrossRefGoogle Scholar
  16. 16.
    Wang Z, Guo S, and Liu C T, JOM 66 (2014) 1966.CrossRefGoogle Scholar
  17. 17.
    Hsu C-Y, Juan C-C, Wang W-R, Sheu T-S, Yeh J-W, and Chen S-K, Mater Sci Eng A 528 (2011) 3581.CrossRefGoogle Scholar
  18. 18.
    Juan C-C, Hsu C-Y, Tsai C-W, Wang W-R, Sheu T-S, Yeh J-W, and Chen S-K, Intermetallics 32 (2013) 401.CrossRefGoogle Scholar
  19. 19.
    Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, and Li T, J Mater Eng Perform 24 (2015) 4594.CrossRefGoogle Scholar
  20. 20.
    Tsai M-H, Yuan H, Cheng G, Xu W, Jian W W, Chuang M-H, Juan C-C, Yeh A-C, Lin S-J, and Zhu Y, Intermetallics 33 (2013) 81.CrossRefGoogle Scholar
  21. 21.
    Tsai C-W, Chen Y-L, Tsai M-H, Yeh J-W, Shun T-T, and Chen S-K J Alloy Compd 486 (2009) 427.CrossRefGoogle Scholar
  22. 22.
    Tsai M-H, Yuan H, Cheng G, Xu W, Tsai K-Y, Tsai C-W, Jian W W, Juan C-C, Shen W-J, and Chuang M-H, Intermetallics 32 (2013) 329.CrossRefGoogle Scholar
  23. 23.
    Xu X, Liu P, Guo S, Hirata A, Fujita T, Nieh T, Liu C, and Chen M, Acta Mater 84 (2015) 145.CrossRefGoogle Scholar
  24. 24.
    Furtek A, in Book of Abstracts and Proc. 7th Int. Conf. Nuclear Option in Countries with Small and Medium Electricity Grids, (eds) Cavlina N, Pevec D, Bajs T, Croatian Nuclear Society, Croatia (2008) 19.Google Scholar
  25. 25.
    Murty K, and Charit I, J Nucl Mater 383 (2008) 189.CrossRefGoogle Scholar
  26. 26.
    Yvon P, and Carré F, J Nucl Mater 385 (2009) 217.CrossRefGoogle Scholar
  27. 27.
    Yvon P, Structural Materials for Generation IV Nuclear Reactors, Woodhead Publishing, Cambridge, 2016.Google Scholar
  28. 28.
    Avilov A, Kuligin K, Nicolopoulos S, Nickolskiy M, Boulahya K, Portillo J, Lepeshov G, Sobolev B, Collette JP, Martin N, and Robins AC, Ultramicroscopy 107 (2007) 431.Google Scholar
  29. 29.
    Kolb U, Gorelik T, Kübel C, Otten M, and Hubert D, Ultramicroscopy 107 (2007) 507.CrossRefGoogle Scholar
  30. 30.
    Kolb U, Gorelik T, and Otten M, Ultramicroscopy 108 (2008) 763.CrossRefGoogle Scholar
  31. 31.
    Sheng G, and Liu CT, Prog Nat Sci Mater Int 21 (2011) 433.CrossRefGoogle Scholar
  32. 32.
    Yang X, and Zhang Y, Mater Chem Phys 132 (2012) 233.CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Zhou Y J, Lin J P, Chen G L, and Liaw P K, Adv Eng Mater 10 (2008) 534.CrossRefGoogle Scholar
  34. 34.
    Mohanty S, Maity T, Mukhopadhyay S, Sarkar S, Gurao N, Bhowmick S, and Biswas K, Mater Sci Eng A 679 (2017) 299.CrossRefGoogle Scholar
  35. 35.
    Mridha S, Samal S, Khan P Y, and Biswas K, Metallurg Mater Trans A 44 (2013) 4532.CrossRefGoogle Scholar
  36. 36.
    Mohanty S, Gurao N, and Biswas K, Mater Sci Eng A 617 (2014) 211.CrossRefGoogle Scholar
  37. 37.
    Sonkusare R, Divya Janani P, Gurao N, Sarkar S, Sen S, and Pradeep K, Mater Chem Phys 210 (2017) 269.Google Scholar
  38. 38.
    Takeuchi A, and Inoue A, Mater Trans 46 (2005) 2817.CrossRefGoogle Scholar
  39. 39.
    Mehrer H (ed), Landolt-Börnstein numerical data and functional relationships in science and technology, Springer-Verlag, Berlin, Heidelberg, Group III, 26 (1990) p 47.Google Scholar
  40. 40.
    Morinaga M, Yukawa N, Adachi H, and Ezaki H, Superalloys 1984 (1984) 523.Google Scholar
  41. 41.
    Lu Y, Dong Y, Jiang L, Wang T, Li T, Zhang Y Entropy 17 (2015) 2355.CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Yang X, and Liaw P, Jom 64 (2012) 830.CrossRefGoogle Scholar
  43. 43.
    He F, Wang Z, Cheng P, Wang Q, Li J, Dang Y, Wang J, and Liu C, J Alloys Compd 656 (2016) 284.CrossRefGoogle Scholar
  44. 44.
    Jiang L, Lu Y, Wu W, Cao Z, and Li T, J Mater Sci Technol 32 (2016) 245.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Indira Gandhi Centre for Atomic ResearchHomi Bhabha National InstituteKalpakkamIndia
  2. 2.Materials Characterization Group, Metallurgy and Materials GroupIGCARKalpakkamIndia
  3. 3.IGCARHBNIKalpakkamIndia
  4. 4.High Pressure & Synchrotron Radiation Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations