Advertisement

Synthesis and Characterization of MnO Nano-particles Using Thermal Plasma Technique

  • Swatirupa Pani
  • S. K. Singh
  • B. K. MohapatraEmail author
Technical Paper
  • 39 Downloads

Abstract

MnO nano-particles were prepared from manganese oxide ore by thermal plasma technique. The size, structure and composition of feed manganese ore and synthesized MnO particles were characterized by XRD, FESEM, XPS, FTIR and Raman spectroscopic techniques, and results were reported. The naturally occurring manganese oxide ore, constituting of manganese minerals like cryptomelane and pyrolusite with subordinate iron [hematite] and aluminous mineral [gibbsite], was collected from Bonai-Keonjhar belt, Odisha, eastern India, and processed in a plasma reactor under oxygen atmosphere. Nano-particles were obtained within a very short period of 10 min. These were mostly globular, rarely cubic and hexagonal in shape and varied in sizes between 10 and 100 nm. The nano-particles constituted only of manganosite (MnO) mineral. Such MnO nano-particles had large numbers of potential uses in the field of electrode materials in different rechargeable batteries, biosensors, pharmaceutical industries, piezoelectric crystals, fuel cell electrodes, catalysis and in specific biogenic and bioscience applications.

Keywords

MnO nano-particles Plasma processing XRD FESEM XPS FTIR 

Notes

Acknowledgements

The authors are grateful to Prof. B. K. Mishra, Director, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, for providing infrastructural facilities. The authors are thankful to Mrs. Swagatika Mohanty and Mrs. Geetikamayee Padhi, officials of IMMT, for carrying out FTIR, XRD and FESEM analyses. Thanks are due to Mr. Tapan kumar Dash for carrying out XPS analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Schmid G, Nano-particles: From Theory to Applications, Wiley, New York (2004).Google Scholar
  2. 2.
    Frank M, and Baumer M, Phys Chem Chem Phys 2 (2002) 3723.CrossRefGoogle Scholar
  3. 3.
    Rice C, Tong Y, Oldfield E, Woeckowski A, Gahn F, Gloaguen F, Leger J M, and Lamy C, J Phys Chem B 104 (2000) 5803.CrossRefGoogle Scholar
  4. 4.
    Sau T K, Pal A, and Pal T, J Phys Chem B 105 (2001) 9266.CrossRefGoogle Scholar
  5. 5.
    Schaaff T G, and Blom D, Nano Lett 2 (2002) 507.CrossRefGoogle Scholar
  6. 6.
    Cuenya B R, Baeck S H, Jaramillo T F, and Mcfarland E W, J Am Chem Soc 125 (2003) 12928.CrossRefGoogle Scholar
  7. 7.
    Narayanan R, and El-Sayed M A, Nano Lett 4 (2004) 1343.CrossRefGoogle Scholar
  8. 8.
    Stowell C A, and Krogel B A, Nano Lett 5 (2005) 1203.CrossRefGoogle Scholar
  9. 9.
    Subramanian V, Wolf E E, and Kamat P V, J Am Soc 126 (2006) 4943.CrossRefGoogle Scholar
  10. 10.
    Kumar H, Manisha A, and Sangwan P, Int J Chem Chem Eng 3 (2013) 155.Google Scholar
  11. 11.
    Yanagisawa K, Udawatte C P, and Nasu S, J Mater Res 15 (2000) 404.CrossRefGoogle Scholar
  12. 12.
    Xu H, and Yu A, Mater Lett 61 (2007) 4043.CrossRefGoogle Scholar
  13. 13.
    Devi P S, Chatterjee M, and Ganguli D, Mater Lett 55 (2002) 205.CrossRefGoogle Scholar
  14. 14.
    Kim D W, Oh S G, Yi S C, Bae S Y, and Moon S K, Chem Mater 12 (2000) 996.CrossRefGoogle Scholar
  15. 15.
    Shukla S, Seal S, Ludwig L, and Parish C, Actuator B Chem 97 (2004) 256.CrossRefGoogle Scholar
  16. 16.
    Nam J G, Choi H, Kim S H, Song K H, and Park S C, Scr Mater 44 (2001) 2047.CrossRefGoogle Scholar
  17. 17.
    Kim S M, Seo K H, Lee J H, Kim J J, Lee H Y, and Lee J S, J Eur Ceram Soc 26 (2006) 73.CrossRefGoogle Scholar
  18. 18.
    Kim K Y, and Park S B, Mater Chem Phys 86 (2004) 210.CrossRefGoogle Scholar
  19. 19.
    Pramanik N C, Das S, and Biswas P K, Mater Lett 56 (2002) 671.CrossRefGoogle Scholar
  20. 20.
    Seo K H, Lee J H, Kim J J, Bertoni M I, Ingram B J, and Mason T O, J Am Ceram Soc 89 (2006) 3431.CrossRefGoogle Scholar
  21. 21.
    Kim B C, Lee J H, Kim J J, and Ikegami T, Mater Lett 52 (2002) 14.CrossRefGoogle Scholar
  22. 22.
    Jain K K, The Handbook of Nano-medicine, Humana Press, Totowa (2007).Google Scholar
  23. 23.
    Klabunde K J, Nanoscale Materials in Chemistry, Wiley, New York (2001).CrossRefGoogle Scholar
  24. 24.
    Niemeyer C M, Angew Chem Int Ed 40 (2001) 4128.CrossRefGoogle Scholar
  25. 25.
    Niemeyer C M, and Mirkin C A, Nano-biotechnology: Concepts, Applications and Perspectives, Wiley, Weinheim (2004).CrossRefGoogle Scholar
  26. 26.
    Yamashita T, and Vannice A, Appl Catal B 13 (1997) 141.CrossRefGoogle Scholar
  27. 27.
    Thackeray M M, Solid State Chem 25 (1997) 1.CrossRefGoogle Scholar
  28. 28.
    Kim D K, Muralidharan P, Lee H W, Ruffo R, Yang Y, Chan C K, Peng H, Huggins R A, and Cui Y, Nano Lett 8 (2008) 3948.CrossRefGoogle Scholar
  29. 29.
    Seo W S, Jo H H, Lee K, Kim B, Oh S J, and Park J T, Angew Chem Int Ed 43 (2004) 1115.CrossRefGoogle Scholar
  30. 30.
    Shen Y F, Zerger R P, Deguzman R N, Suib S L, Mccurdy L, Potter D I, and O’young C L, Science 260 (1993) 511.CrossRefGoogle Scholar
  31. 31.
    Sun B, Chen Z, Kim H S, Ahn H, and Wang G, Power Sources 196 (2011) 3346.CrossRefGoogle Scholar
  32. 32.
    Zhang X, Xing Z, Wang L, Zhu Y, Li Q, Liang J, Yu Y, Huang T, Tang K, Qian Y, and Shen X, J Mater Chem 22 (2012) 17864.CrossRefGoogle Scholar
  33. 33.
    Sun Y, Hu X, Luo W, and Huang Y, Mater Chem 22 (2012) 19190.CrossRefGoogle Scholar
  34. 34.
    Li F, Zhang L H, Evans D G, and Duan X, Colloids Surf A 244 (2004) 169.CrossRefGoogle Scholar
  35. 35.
    Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A, and Aksay I A, J Phys Chem B 110 (2006) 8535.CrossRefGoogle Scholar
  36. 36.
    Peng H, Mo Z, Liao S, Liang H, Yang L, Luo F, Song H, Zhong Y, and Zhang B, Sci Rep 3 (2013).Google Scholar
  37. 37.
    Moulder J F, Stickle W F, Sobol P E, and Bomben K D, in Handbook of X-ray Photoelectron Spectroscopy, (ed) Chastain J, Perkin-Elmer Corporation, Eden Prairie (1992).Google Scholar
  38. 38.
    Sharma P K, and Whittingham M S, Mater Lett 48 (2001) 319.CrossRefGoogle Scholar
  39. 39.
    Zhang W X, Yang Z H, Liu Y, Tang S P, Han X Z, and Chen M, J Cryst Growth 263 (2004) 394.CrossRefGoogle Scholar
  40. 40.
    Bernard M C, Hugot Le Goff A, and Thi B V, J Electrochem Soc 140 (1993) 3065.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Swatirupa Pani
    • 1
  • S. K. Singh
    • 2
  • B. K. Mohapatra
    • 2
    Email author
  1. 1.Academy of Scientific and Innovative ResearchNew DelhiIndia
  2. 2.CSIR-IMMTBhubaneswarIndia

Personalised recommendations