Evaluation of Microstructure due to Addition of Carbon in Ni–Cr–Mo Steel Mechanically Through Surface Mechanochemical Case Carburizing Treatment (SMCT)

  • Jogindra Nath SahuEmail author
  • C. Sasikumar
Technical Paper


Mechanochemical reaction of Fe–C is achieved in Ni–Cr–Mo steel during surface mechanochemical case carburizing treatment (SMCT) at room temperature. Gradient nano-carbide layers are formed in the surface and near surface up to few microns. The Ni–Cr–Mo steel was treated for 15, 30, 45 and 60 min, respectively, to find out the alteration in microstructure. The surface and cross-sectional microstructures were investigated by Olympus optical microscope (Japan), 6390-A scanning electron microscope and JEOL F-2100 transmission electron microscope (TEM). It is observed that mechanical alloying of carbon in iron lattice is achieved and surface carbon concentration increased from 0.17 to 0.8 wt% with 1 hour of SMCT operation time. The mechanochemical reaction between Fe and C produces Fe3C (cementite) in the surface and undersurface up to 500–800 microns along with nano-particulate on the surface and near surface in 1-hour operation time. It is observed that the carbide cell blocks (CB) and geometrically necessary boundaries (GNB) are produced due to severe plastic deformation created by SMCT operation.


Surface mechanochemical case carburizing treatment (SMCT) Cell blocks (CB) and severe plastic deformation Activate charcoal TEM Geometrically necessary boundaries (GNB) 



Authors are thankful to Director of MANIT, Bhopal, for providing the characterization facility to complete this study. The microstructural study would have not been completed without the TEM analysis; hence, authors specially thank Central Testing Facility Center of IIT Kharagpur, for their kind help for TEM sample preparation and testing.


  1. 1.
    Yao B, Han Z, and Lu K, Wear 301 (2013) 608.CrossRefGoogle Scholar
  2. 2.
    Arifvianto B, Suyitnoa, Mahardika M, Dewoa P, Iswantoa P T, and Salima U A, Mater Chem Phys 125 (2012) 418.CrossRefGoogle Scholar
  3. 3.
    Unal O, and Varol R, Appl Surf Sci 351 (2015) 289.CrossRefGoogle Scholar
  4. 4.
    Gallego J, Pinheiro T S, Valiev R Z, Polyakova V, Bolfarini C, Kiminami C S, Jorge Jr A M, and Botta W J, Mater Res 15 (2012) 786.CrossRefGoogle Scholar
  5. 5.
    Hohenwarter A, Mater Sci Eng A 626 (2015) 80.CrossRefGoogle Scholar
  6. 6.
    Tao N R, Sui M L, Lu J, and Lu K, Nanostruct Mater 11 (1999) 433.CrossRefGoogle Scholar
  7. 7.
    Ward T S, Chen W, Schoenitz M, Dave R N, and Dreizin E L, Acta Mater 53 (2005) 2909.CrossRefGoogle Scholar
  8. 8.
    Suryanarayana C, Prog Mater Sci 46 (2001) 1.Google Scholar
  9. 9.
    Lu K, and Lu J, J Mater Sci Technol 15 (1999) 193.CrossRefGoogle Scholar
  10. 10.
    Kargar F, Laleh M, Shahrabi T, and Rouhaghdam S, Bull Mater Sci 37 (2014) 1087.CrossRefGoogle Scholar
  11. 11.
    Zhang H W, Hei Z K, Liu G, Lu J, and Lu K, Acta Mater 51 (2003) 1871.CrossRefGoogle Scholar
  12. 12.
    Chen A Y, Zhang J B, Song H W, and Lu J, Surf Coat Technol 201 (2007) 7462.CrossRefGoogle Scholar
  13. 13.
    Ma CL, Takasugi T, and Hanada S, Scr Mater 34 (1996) 1131.CrossRefGoogle Scholar
  14. 14.
    Wu X, Tao N, Hong Y, Xu B, Lu J, and Lu K, Acta Mater 50 (2002) 2075.CrossRefGoogle Scholar
  15. 15.
    Marteau J, and Bouvier S, Surf Coat Technol 296 (2016) 136.CrossRefGoogle Scholar
  16. 16.
    Sahu J N, and Sasikumar C, Trans Indian Inst Metals 71 (2018) 915.CrossRefGoogle Scholar
  17. 17.
    Liu W, Yang Z, Xia Z, Appl Surf Sci 292 (2014) 556.CrossRefGoogle Scholar
  18. 18.
    Manna I, Chattopadhyay P P, Banhart F, Croopnick J, and Fecht H J, Wear 264 (2008) 940.CrossRefGoogle Scholar
  19. 19.
    Tao N R, Lu J, and Lu K, Mater Sci Forum 579 (2008) 91.CrossRefGoogle Scholar
  20. 20.
    Li N, Li Y D, Li Y X, Wud Y H, Zheng Y F, Hane Y, Mater Sci Eng 35 (2014) 314.CrossRefGoogle Scholar
  21. 21.
    Chen A Y, Shi S S, Tian H L, Ruanb H H, Li X, Pan D, and Lu J, Mater Sci Eng 595 (2014) 34.CrossRefGoogle Scholar
  22. 22.
    Hu T, Chu C, Wu S, Xin Y, Lu J, and Chu P, J Nanosci Nanotechnol 11 (2011) 10954.CrossRefGoogle Scholar
  23. 23.
    Callister W D, and Rethwisch D G, Fundamentals of materials science and engineering: an integrated approach, Wiley, New york (2012).Google Scholar
  24. 24.
    Lomayeva S F, Yazovskikh K A, Maratkanova A N, Syugaev A V, Timoshenkova O R, Kaygorodov A S, Zayats S V, Paranin S N, and Ivanov V V, Inorg Mater Appl Res 4 (2013) 138.CrossRefGoogle Scholar
  25. 25.
    Islamgaliev R K, Nikitina M A, Ganeev V, and Karavaeva M V, Sci Eng 194 (2017) 12025.Google Scholar
  26. 26.
    Umemoto M, Todaka Y, and Tsuchiya K, Mater Trans 44 (2003) 1488.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Metallurgical EngineeringMANITBhopalIndia

Personalised recommendations