Skip to main content
Log in

Investigation on Microstructure, Mechanical Properties and Fracture Mechanism of Trimodal SiC Reinforced Al5083/Al2024 Aluminum Alloy Based Nanocomposites Fabricated by Mechanical Milling and Hot Extrusion Processes

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The prime objective of this study is an investigation on the effects of mechanical milling process, incorporation of silicon carbide reinforcement phase and different amounts and types of coarse-grained aluminum powders (30 and 50 wt% unmilled Al5083 and Al2024) on microstructure, mechanical properties and fracture behavior of trimodal SiC reinforced Al5083/Al2024 aluminum alloy matrix nanocomposites. These composites were prepared through mechanical milling and hot extrusion processes. Results indicated that nanocrystalline structures of Al5083 alloy and Al5083–5 wt%SiC composite powders were formed during mechanical milling time of 50 h. Al5083–5 wt%SiC nanocomposite sample revealed strength and hardness superior to the coarse-grained aluminum sample. However, its elongation decreased down to a minimum value of 0.98%. Addition of 30 wt% unmilled Al2024 particles to the nanocomposite powder caused considerable improvement in the ductility, slight decrease in strength and hardness values and change in fracture mechanism from brittle to brittle-ductile mode, compared to that of Al5083–5 wt%SiC nanocomposite sample.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hunt H, and Herling D R, Adv Mater Process 162 (2004) 39.

    Google Scholar 

  2. Kainer K U, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, Wiley-VCH, Weinheim (2006).

    Book  Google Scholar 

  3. Tazari H, and Siadati M H, J Alloys Compd 729 (2017) 960.

    Article  Google Scholar 

  4. Khademian M, Alizadeh A, and Abdollahi A, Trans Indian Inst Met 70 (2016) 1635.

    Article  Google Scholar 

  5. Abdollahi A, Alizadeh A, and Baharvandi H R, Mater Des 55 (2014) 471.

    Article  Google Scholar 

  6. Gargatte S, Upadhye R R, Dandagi V S, Desai S R, and Vaghamode B S, J Miner Mater Charact Eng 1 (2013) 8.

    Google Scholar 

  7. Bathula S, Anandani R C, Dhar A, and Srivastava A K, Mater Sci Eng A 545 (2012) 97.

    Article  Google Scholar 

  8. Reitz W, Mater Manuf Process 10 (1995) 591.

    Article  Google Scholar 

  9. Surappa M K, Sadhana 28 (2003) 319.

    Article  Google Scholar 

  10. Razaghian A, and Chandra T, Compos Sci Technol 36 (2004) 293.

    Google Scholar 

  11. Callioglu H, Ozdemir I, and Gode C, Sci Res Essays 6 (2011) 1371.

    Google Scholar 

  12. Rosso M, J Mater Process Technol 175 (2006) 364.

    Article  Google Scholar 

  13. Everett R K, Metal Matrix Composites: Processing and Interfaces, Academic Press, Boston (1991).

    Google Scholar 

  14. Kaczmar J W, Pietrzak K, and Wlosinski W, J Mater Process Technol 106 (2000) 58.

    Article  Google Scholar 

  15. Miracle D B, Compos Sci Technol 65 (2005) 2526.

    Article  Google Scholar 

  16. Chawala N, and Chawala K K, Metal Matrix Composites, Springer, Berlin (2006).

    Book  Google Scholar 

  17. Chawala K K, Composite Materials, Springer, New York (2012).

    Book  Google Scholar 

  18. Ray S, J Mater Sci 28 (1993) 5397.

    Article  Google Scholar 

  19. Suryanarayana C, Ivanov E, and Boldyrev V V, Mater Sci Eng A 304 (2001) 151.

    Article  Google Scholar 

  20. Fogagnolo J B, Velasco F, Robert M H, and Torralba J M, Mater Sci Eng A 342 (2003) 131.

    Article  Google Scholar 

  21. Witkin D, Han B Q, and Lavernia E J, Metall Mater Trans A 37 (2006) 185.

    Article  Google Scholar 

  22. Han B Q, Ye J, Tang F, Schoenung J, and Lavernia E J, J Mater Sci 42 (2007) 1660.

    Article  Google Scholar 

  23. Zhang H, Ye J, Joshi S P, Schoenung J M, Chin E S C, Gazonas G A, and Ramesh K T, Adv Eng Mater 9 (2007) 355.

    Article  Google Scholar 

  24. Ahn B, Deformation Behavior and Microstructural Evolution of Nanocrystalline Aluminum Alloys and Composites, M Sc Thesis, University of Southern California, United States of America (2008).

  25. Meyers M A, Mishra A, and Benson D J, Prog Mater Sci 51 (2006) 427.

    Article  Google Scholar 

  26. Alizadeh A, Taheri-Nassaj E, and Hajizamani M, J Mater Sci Technol 27 (2011) 1113.

    Article  Google Scholar 

  27. Abdollahi A, Alizadeh A, and Baharvandi H R, Mater Sci Eng A 608 (2014) 139.

    Article  Google Scholar 

  28. Yao B, Hofmeister C, Patterson T, Sohn Y, Bergh M, Delahanty T, and Cho K, Compos Part A Appl Sci Manuf 41 (2010) 933.

    Article  Google Scholar 

  29. McCrary-Dennis MCL, and Okoli O I, J Reinf Plast Compos 31 (2012) 1687.

    Article  Google Scholar 

  30. Zhang Y, Sabbaghianrad S, Yang H, Tropping T D, Langdon T G, Lavernia E J, Schoenung J M, and Nutt S R, Metall Mater Trans A 46 (2015) 5877.

    Article  Google Scholar 

  31. Fan G J, Choo H, Liaw P K, and Lavernia E J, Acta Mater 54 (2006) 1759.

    Article  Google Scholar 

  32. Han B Q, Lavernia E J, Lee Z, Nutt S, and Witkin D, Metall Mater Trans A 36 (2005) 957.

    Article  Google Scholar 

  33. Lee Z, Witkin D B, Radmilovic V, Lavernia E J, and Nutt S R, Mater Sci Eng A 410 (2005) 462.

    Article  Google Scholar 

  34. Ye J, Han B Q, Lee Z, Ahn B, Nutt S R, and Schoenung J M, Scr Mater 53 (2005) 481.

    Article  Google Scholar 

  35. Tang F, Hagiwara M, and Schoenung J M, Mater Sci Eng A 407 (2005) 306.

    Article  Google Scholar 

  36. Taheri-Nassaj E, and Alizadeh A, Adv Mater Res 383 (2012) 2733.

    Google Scholar 

  37. Alizadeh A, and Taheri-Nassaj E, Mater Charact 67 (2012) 119.

    Article  Google Scholar 

  38. Alizadeh A, Taheri-Nassaj E, and Baharvandi H R, Bull Mater Sci 34 (2011) 1039.

    Article  Google Scholar 

  39. Alizadeh A, and Taheri-Nassaj E, Tribol Lett 44 (2011) 59.

    Article  Google Scholar 

  40. Alizadeh A, Abdollahi A, and Radfar M J, Trans Nonferrous Met Soc China 27 (2017) 1233.

    Article  Google Scholar 

  41. ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International (2007).

  42. Fecht H J, Nanostruct Mater 6 (1995) 33.

    Article  Google Scholar 

  43. Liu G, Wang Q, Liu T, Ye B, Jiang H, and Ding W, Mater Sci Eng A 696 (2017) 208.

    Article  Google Scholar 

  44. Wang Z, Song M, Sun C, Xiao D, and He Y, Mater Sci Eng A 527 (2010) 6537.

    Article  Google Scholar 

  45. Vogt R G, Zhang Z, Tropping T D, Lavernia E J, and Schoenung J M, J Mater Process Technol 209 (2009) 5046.

    Article  Google Scholar 

  46. Sun F, Rojas P, Zuniga A, and Lavernia E J, Mater Sci Eng A 430 (2006) 90.

    Article  Google Scholar 

  47. Witkin D, Lee Z, Rodriguez R, Nutt S, and Lavernia E J, Scr Mater 49 (2003) 297.

    Article  Google Scholar 

  48. Dieter G E, Mechanical Metallurgy, McGraw-Hill, New York (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A., Eslami, M. & Babaee, M.H. Investigation on Microstructure, Mechanical Properties and Fracture Mechanism of Trimodal SiC Reinforced Al5083/Al2024 Aluminum Alloy Based Nanocomposites Fabricated by Mechanical Milling and Hot Extrusion Processes. Trans Indian Inst Met 71, 2325–2338 (2018). https://doi.org/10.1007/s12666-018-1364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1364-2

Keywords

Navigation