Skip to main content
Log in

Investigation on microstructure and tensile behaviour of stir cast LM13 aluminium alloy reinforced with copper coated short steel fibers using response surface methodology

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Copper coated steel fibers reinforced LM13 aluminium alloy composites have been prepared using stir casting process. Experiments have been designed using response surface methodology by varying wt% of reinforcement (0–10), stirrer speed (350–800 rpm) and pouring temperature (700–800 °C). Microstructure, tensile strength and fracture surface of composites have been investigated. Analysis of variance, significance test and confirmation tests have been performed and regressions models have been developed to predict the tensile strength of composites. Response surface plots reveal that tensile strength of composites increases with increasing wt% of copper coated steel fibers reinforcement up to 6 wt%. Further increase in wt% of steel fibers decreases the tensile strength of composites. However tensile strength of composites increases with increasing stirrer speed due to the uniform and homogeneous dispersion of steel fibers in matrix. Optimum stir cast process parameters for obtaining higher tensile strength are found to be 5.9 wt% of reinforcement, 753 °C pouring temperature and stirrer speed of 633 rpm. Fracture mechanism is dominated by steel fiber pullouts in composites with higher wt% of reinforcement and dimples are observed in the surface of composites containing lower levels of wt% of reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miracle D B, Compos Sci Technol 65 (2005)2526. https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  Google Scholar 

  2. Surappa M K, Alum Matrix Compos Chall Oppor 28 (2003) 319.

    Google Scholar 

  3. Ahmad Z, J Reinf Plast Compos 20 (2001) 921. https://doi.org/10.1177/073168401772678896

    Article  Google Scholar 

  4. Miller W., Zhuang L, Bottema J Wittebrood A, De Smet P, Haszler A, and Vieregge A, Mater Sci Eng A 280 (2000) 37. https://doi.org/10.1016/s0921-5093(99)00653-x

    Article  Google Scholar 

  5. Mazahery A, and Shabani M O, Trans Nonferrous Met Soc China 22 (2012) 275. https://doi.org/10.1016/s1003-6326(11)61171-0

    Article  Google Scholar 

  6. Saravanan S D, and Kumar M S, Procedia Eng 64 (2013) 1505. https://doi.org/10.1016/j.proeng.2013.09.232

    Article  Google Scholar 

  7. Mazahery A, and Ostad Shabani M, J Mater Eng Perform 21 (2012) 247. https://doi.org/10.1007/s11665-011-9867-6

    Article  Google Scholar 

  8. David Raja Selvam J, Robinson Smart D S, and Dinaharan I, Mater Des 49 (2013) 28. http://dx.doi.org/10.1016/j.matdes.2013.01.053

    Article  Google Scholar 

  9. Sajjadi S A, Ezatpour H R, and Torabi Parizi M, Mater Des 34 (2012) 106. https://doi.org/10.1016/j.matdes.2011.07.037

    Article  Google Scholar 

  10. Kok M, J Mater Process Technol 161 (2005) 381. https://doi.org/10.1016/j.jmatprotec.2004.07.068

    Article  Google Scholar 

  11. Michael Rajan H B, Ramabalan S, Dinaharan I, and Vijay S J, Mater Des 44 (2013) 438. https://doi.org/10.1016/j.matdes.2012.08.008

    Article  Google Scholar 

  12. Feng Y C, Geng L, Zheng P Q, Zheng Z Z, and Wang G S, Mater Des 29 (2008) 2023. https://doi.org/10.1016/j.matdes.2008.04.006

    Article  Google Scholar 

  13. Seshan S, Guruprasad A, Prabha M, and Sudhakar A, J Indian Inst Sci 76 (1996) 1.

  14. Radhika N, and Raghu R, Tribol Lett 59 (2015) 2. https://doi.org/10.1007/s11249-015-0516-3

    Article  Google Scholar 

  15. Mandal D, Dutta B K, and Panigrahi S C, J Mater Sci 41 (2006) 4764. https://doi.org/10.1007/s10853-006-0036-5

    Article  Google Scholar 

  16. Bhagat R B, Composites 19 (1988) 393. https://doi.org/10.1016/0010-4361(88)90127-9

    Article  Google Scholar 

  17. Baron R, Wert J, Gerard D, and Wawner F, J Mater Sci 32 (1997) 6435.

    Article  Google Scholar 

  18. Ureña A, Rams J, Campo M, and Sánchez M, Wear 266 (2009) 1128. https://doi.org/10.1016/j.wear.2009.03.016

    Article  Google Scholar 

  19. Tang Y, Liu L, Li W, Shen B, and Hu W, Appl Surf Sci 255 (2009) 4393. https://doi.org/10.1016/j.apsusc.2008.10.124

    Article  Google Scholar 

  20. Ramesh C S, Keshavamurthy R, Channabasappa B H, and Ahmed A, Mater Sci Eng A 502 (2009) 99. https://doi.org/10.1016/j.msea.2008.10.012

    Article  Google Scholar 

  21. Xia L, Jia B, Zeng J, and Xu J, Mater Charact 60 (2009) 363. https://doi.org/10.4028/www.scientific.net/KEM.474-476.1605

    Article  Google Scholar 

  22. Hajjari E, Divandari M, and Arabi H, Mater Manuf Process 26 (2011) 599. https://doi.org/10.1080/10426910903447311

    Article  Google Scholar 

  23. Guo E, Yue H, Fei W, and Wang L J Compos Mater 46 (2011) 1475–1481. https://doi.org/10.1177/0021998311421041

    Article  Google Scholar 

  24. Pourhosseini S, Beygi H, and Sajjadi S A, Mater Sci Technol 0 (2017) 1. https://doi.org/10.1080/02670836.2017.1366708

    Google Scholar 

  25. Mandal D, Dutta B K, and Panigrahi S C, Mater Sci Eng A 492 (2008) 346–352. https://doi.org/10.1016/j.msea.2008.03.031

    Article  Google Scholar 

  26. Joardar H, Das NS, Sutradhar G, and Singh S, Meas J Int Meas Confed 47 (2014) 452. https://doi.org/10.1016/j.measurement.2013.09.023

    Article  Google Scholar 

  27. Gopalakannan S, and Senthilvelan T, Meas J Int Meas Confed 46 (2013) 2705. https://doi.org/10.1016/j.measurement.2013.04.036

    Article  Google Scholar 

  28. Rajmohan T, and Palanikumar K, Meas J Int Meas Confed 46 (2013) 1470. https://doi.org/10.1016/j.measurement.2012.11.034

    Article  Google Scholar 

  29. Shandilya P, Jain P K, and Jain N K, Procedia Eng 38 (2012) 2371. https://doi.org/10.1016/j.proeng.2012.06.283

    Article  Google Scholar 

  30. Patil N G, and Brahmankar P K, Int J Adv Manuf Technol 51 (2010) 599. https://doi.org/10.1007/s00170-010-2633-3

    Article  Google Scholar 

  31. Seeman M, Ganesan G, Karthikeyan R, and Velayudham A, Int J Adv Manuf Technol 48 (2010) 613. https://doi.org/10.1007/s00170-009-2297-z

    Article  Google Scholar 

  32. Prabu S B, Karunamoorthy L, Kathiresan S, and Mohan B, J Mater Process Technol 171 (2006) 268. https://doi.org/10.1016/j.jmatprotec.2005.06.071

    Article  Google Scholar 

  33. Mandal D, Dutta B K, and Panigrahi S C, J Mater Process Technol 198 (2008) 195. https://doi.org/10.1016/j.jmatprotec.2007.06.074

    Article  Google Scholar 

  34. Moses J J, Trans Nonferrous Met Soc China 26 (2016) 1498. https://doi.org/10.1016/s1003-6326(16)64256-5

    Article  Google Scholar 

  35. Mandal D, Dutta B K, and Panigrahi S C, Mater Sci Eng A 460461 (2007) 485. https://doi.org/10.1016/j.msea.2007.01.074

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to All India Council for Technical Education for providing financial assistance to this project. The authors are grateful to Sri Krishna College of Engineering and Technology and Karunya University for providing research facilities to complete this project.

Funding

This study was funded by All India Council for Technical Education (Grant Number: 8023/RID/RPS-62/pvt(11policy)/2011-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson Jerold Samuel Chelladurai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelladurai, S.J.S., Arthanari, R., Selvarajan, R. et al. Investigation on microstructure and tensile behaviour of stir cast LM13 aluminium alloy reinforced with copper coated short steel fibers using response surface methodology. Trans Indian Inst Met 71, 2221–2230 (2018). https://doi.org/10.1007/s12666-018-1353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1353-5

Keywords

Navigation