Skip to main content
Log in

Effect of Operation Parameters on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminum Alloys

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Rolled plates of 5 mm thick AA5083, AA6082 and AA7075 aluminum alloys Joints were fabricated by diffusion bonding at different temperatures. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys were characterized by transmission electron microscopy. Metallurgical investigations and mechanical tests were also performed to correlate the microstructural investigations with the mechanical properties of the produced diffusion bonded joints. It was observed that the bonding and shear strength increased with the increase in bonding temperature due to the diffusion of micro-constituents in the interface. Higher temperature enhanced the uniform distribution of secondary phase particles, which further improved the reduction in pores/defects in the bonded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eslami P, and Taheri A K, Mater Lett 65 (2011) 1862.

    Article  Google Scholar 

  2. Gronostajski J, Kaczmar J, Marciniak H and Matuszak A, in Recycling of Aluminium Alloys by Diffusion Bonding Process, Proc. of Int. Conf. The Recycling of Metals, Amsterdam, (1994) p 287.

  3. Islam M F, and Ridley N, Scripta Mater 38 (1998) 1187.

    Article  Google Scholar 

  4. Kundu S, and Chatterjee S, Mater Sci Eng A 425 (2006) 107.

    Article  Google Scholar 

  5. Ghosh M, Bhanumurthy K, Kale G B, Krishnan J and Chatterjee S, J Nucl Mater 322 (2003) 235.

    Article  Google Scholar 

  6. Kundu S, Ghosh M, Laik A, Bhanumurthy K, Kale G B, and Chatterjee S, Mater Sci Eng A 407 (2005) 154.

    Article  Google Scholar 

  7. Huang Y, Ridley N, and Humphreys F J, Mater Sci Eng A 266 (1999) 295.

    Article  Google Scholar 

  8. Shirzadi A A, Saindrenan G, and Wallach E R, Mater Sci Forum 396402 (2002) 1579.

    Article  Google Scholar 

  9. Ghosh M, and Chatterjee S, Mater Sci Eng A 358 (2003) 152.

    Article  Google Scholar 

  10. Kenevisi M S, and Mousavi Khoie S M, Mater Lett 76 (2012) 144.

    Article  Google Scholar 

  11. Yeh M S, and Chuang T S, Scr Metall Mater 33 (1995) 1277.

    Article  Google Scholar 

  12. Feng J C, Zhang B G, Qian Y Y, and He P, Mater Charact 48 (2002) 401.

    Article  Google Scholar 

  13. Liu P, Li Y, Haoran G, and Juan W, Vacuum 80 (2006) 395.

    Article  Google Scholar 

  14. Huang Y, Humphreys F J, Ridley N, and Wang Z C, Mater Sci Technol 14 (1988) 405.

    Article  Google Scholar 

  15. Mahendran G, Balasubramanian V, and Senthilvelan T, Mater Des 30 (2009) 1240.

    Article  Google Scholar 

  16. ASTM standard D1002 Standard Test Method for Apparent Shear Strength of SingleLap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal to Metal), ASM International (1999).

  17. Vander Voort G F Metallography and Microstructures, ASM Hand Book, ASM International, Materials Park (2004).

  18. Abbasi M, Karimi Taheri A, and Salehi M T, J Alloy Compd 319 (2001) 233.

    Article  Google Scholar 

  19. He P, and Liu D, Mater Sci Eng A 437 (2006) 430.

    Article  Google Scholar 

  20. Sunwoo A, and Lum R, Scr Metall Mater 33 (1995) 639.

    Article  Google Scholar 

  21. Wilkinson D S, in Super Plasticity and Super Plastic Forming, (eds) Hamilton C H, and Paton N E, TMS, Warrendale, PA (1988), p 81.

  22. Hu W, Ponge D, and Gottstein G, Mater Sci Eng A 190 (1995) 223.

    Article  Google Scholar 

  23. Smith W F, Principles of Materials Science and Engineering, McGraw-Hill Publishing Company, New York (1990).

    Google Scholar 

  24. Askeland R D, The Science and Engineering of Material, PWS Publishing Company, Boston (1994).

    Google Scholar 

  25. He P, Feng J C, Zhang B G, and Qian Y Y, Mater Charact 48 (2002) 401.

    Article  Google Scholar 

  26. Mahendran G, Balasubramanian V, and Senthilvelan T, Trans Non-Ferr Metal Soc China 20 (2010) 997.

    Article  Google Scholar 

  27. Pilling J, and Rediely N, Mater Sci Technol 3 (1987) 353.

    Article  Google Scholar 

  28. Wert J A, Paton N E, Hamilton C H, and Mahoney M W, Metall Trans 12A (1981) 1267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venugopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venugopal, S., Mahendran, G. Effect of Operation Parameters on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminum Alloys. Trans Indian Inst Met 71, 2185–2198 (2018). https://doi.org/10.1007/s12666-018-1350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1350-8

Keywords

Navigation