Skip to main content
Log in

Experimental Investigation and optimization of Process Parameters for Shear Strength of Compound Cast Bimetallic Joints

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Joining of A356 alloy and magnesium was carried out by vacuum assisted sand mold compound casting process. Microstructure at the joint interface was studied by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffractometer. Characterization indicated that a relatively uniform joint interface was obtained. The joint interface was composed of three distinct layers containing Mg2Al3 on aluminum side, Mg17Al12 + δ eutectic structure on magnesium side and Mg17Al12 as middle layer. As a result of interaction between silicon, present in A356 with magnesium, Mg2Si compound was formed. Push out test was conducted on electronics universal testing machine to measure the shear strength across the joint interface. The important process parameters (grit size of sand paper, insert temperature, pouring temperature and vacuum pressure) were optimized to maximize the shear strength. Optimization was carried out by using response surface methodology, desirability analysis and genetic algorithm (GA) techniques. It was observed that the shear strength increased by 14.21, 8.60 and 4.80% with genetic algorithm, desirability analysis and regression model respectively. GA reported the optimal value of shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Senthil P, and Amirthagadeswaran K S, Arab J Sci Eng 39 (2014) 2215.

    Article  Google Scholar 

  2. Wang L, Lett R, Felicelli S, Berry J, Jordon J, and Penrod D, Int J Metalcast 5 (2011) 37.

    Article  Google Scholar 

  3. Kulekci M K, Int J Adv Manuf Technol 39 (2008) 851.

    Article  Google Scholar 

  4. Paramsothy M, Srikanth N, and Gupta M, J Alloys Compd 461 (2008) 200.

    Article  Google Scholar 

  5. Liu L, Ren D, and Liu F, Materials 7 (2014) 3735.

    Article  Google Scholar 

  6. Borrisutthekul R, Miyashita Y, and Mutoh Y, Sci Technol Adv Mater 6 (2005) 199.

    Article  Google Scholar 

  7. Liu L, Wang H, Song G, and Ye J, J Mater Sci 42 (2007) 565.

    Article  Google Scholar 

  8. Wang J, Yajianga L, and Wanquna H, React Kinet Catal Lett 95 (2008) 71.

    Article  Google Scholar 

  9. Peng L, Yajiang L, Haoran G, and Juan W, Vacuum 80 (2006) 395.

    Article  Google Scholar 

  10. Sharma H K, Bhatt K, Shah K, and Joshi U, Procedia Technol 23 (2016) 566.

    Article  Google Scholar 

  11. Kostka A, Coelho R S, Santos J D, and Pyzalla A R, Scripta Mater 60 (2009) 953.

    Article  Google Scholar 

  12. Firouzdor V, and Kou S, Metall Mater Trans A 41A (2010) 3228.

    Google Scholar 

  13. Papis K J M, Loeffler J F, and Uggowitzer P J, Sci China Ser E 52 (2009) 46.

    Article  Google Scholar 

  14. Papis K J M, Hallstedt B, Loffler J F, and Uggowitzer P J, Acta Mater 56 (2008) 3036.

    Article  Google Scholar 

  15. Hajjari E, Divandari M, Razavi S H, Emami S M, Homma T, and Kamado S, J Mater Sci 46 (2011) 6491.

    Article  Google Scholar 

  16. Hajjari E, Divandari M, Razavi S H, Homma T, and Kamado S, Metall Mater Trans A 43 (2012) 4667.

    Article  Google Scholar 

  17. Ho J S, Lin C B, and Liu C H, J Mater Sci 39 (2004) 2473.

    Article  Google Scholar 

  18. Salimi M, Malekan M, Nami B, and Hoseiny H, J Mater Res 32 (2017) 874.

    Article  Google Scholar 

  19. Peronnet M S, Guiot E, Bosselet F, Dezellus O, Rouby D, and Viala J C, Mater Sci Eng A 445–446 (2007) 296.

    Article  Google Scholar 

  20. Dezellus O, Digonnet B, Peronnet M S, Bosselet F, Rouby D, and Viala J C, Int J Adhes Adhes 27 (2007) 417.

    Article  Google Scholar 

  21. Dezellus O, Zhe M, Bosselet F, Rouby D, and Viala J C, Mater Sci Eng A 528 (2011) 2795.

    Article  Google Scholar 

  22. Nie X, Zho K, Li H, Du Q, Zhang J, and Zhuang L, China Foundry 12 (2015) 1.

    Google Scholar 

  23. Emami S M, Divandari M, Arabi H, and Hajjari E, J Mater Eng Perform 22 (2013) 123.

    Article  Google Scholar 

  24. Jiang W, Fan Z, Li G, Yang L, and Liu X, Metall Mater Trans A 47 (2016) 6487.

    Article  Google Scholar 

  25. Li G, Jiang W, Fan Z, Jiang Z, Liu X, and Liu F, Int J Adv Manuf Technol 91 (2016) 1355.

    Article  Google Scholar 

  26. Tayal R K, Kumar S, and Singh V, Int J Metalcast (in press).

  27. Singh B, Kumar J, and Kumar S, Mater Manuf Process 30 (2015) 303.

    Article  Google Scholar 

  28. Montgomery D C, Design and analysis of experiments, Wiley, New Delhi (2014), p 478.

    Google Scholar 

  29. Mitchell M, An introduction to genetic algorithm, Prentice Hall of India, New Delhi (2005), p 6.

    Google Scholar 

  30. Aly W M, Arab J Sci Eng 41 (2016) 5195.

    Article  Google Scholar 

  31. Ganesan H, and Mohankumar G, Arab J Sci Eng 38 (2013) 1529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajender Kumar Tayal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayal, R.K., Kumar, S. & Singh, V. Experimental Investigation and optimization of Process Parameters for Shear Strength of Compound Cast Bimetallic Joints. Trans Indian Inst Met 71, 2173–2183 (2018). https://doi.org/10.1007/s12666-018-1349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1349-1

Keywords

Navigation