Transactions of the Indian Institute of Metals

, Volume 71, Issue 7, pp 1791–1801 | Cite as

Globularisation of α Lamellae in Titanium Alloy: Effect of Strain, Strain Path and Starting Microstructure

  • Bipin Kedia
  • I. Balasundar
  • T. Raghu
Technical Paper


To gain in-depth understating on the globularisation of α lamellae in titanium alloys, a systematic study has been carried out to evaluate the effect of strain and strain path on the microstructural evolution of titanium alloy Ti–6Al–4V with two different starting microstructures viz., water quenched martensitic and air cooled lamellar microstructure. Ti–6A1–4V was subjected to similar amounts of strain using uniaxial (monotonic) and multi-axial (non-monotonic) deformation. A vis-à-vis comparison of the microstructures obtained after deformation revealed that the material with fine α lamellae exhibits better globularisation kinetics irrespective of the mode of deformation. Further alteration of the strain path (multi-axial or non-monotonic) in the material before achieving critical percentage of deformation results in reduced globularisation. Beyond this critical amount of deformation, the results obtained for both monotonic and non-monotonic deformation are comparable. However, multi-axial or non-monotonic deformation results in better homogeneity in terms of microstructural evolution.


Titanium Ti–6Al–4V Globularisation Multi-axial deformation Recrystallization CDRX 



The authors express their gratitude to Dr. Vikas Kumar, Director, Defence Metallurgical Research Laboratory (DMRL) for encouraging us to publish his work. The authors thank Dr. A. K. Mukhopadhyay, Division Head, Aeronautical Materials Division, DMRL for his support and valuable suggestions. Authors acknowledge the funding provided by Defence Research and Development Organisation (DRDO) to carry out the work.


  1. 1.
    Lutjering G, Williams J C, Titanium. Springer, Berlin (2003), p 01.Google Scholar
  2. 2.
    Leyens C, Peters M, Titanium and Titanium Alloys. Wiley, Chichester (2003), p 523.CrossRefGoogle Scholar
  3. 3.
    Moore J B, Tequesta J, Athey R L, Fabrication Method for the High Temperature Alloys, US Patent 3519503 (1970).Google Scholar
  4. 4.
    Utyashev F Z, Mukhtarov S K, Mater Sci Forum 838839 (2016) 355.CrossRefGoogle Scholar
  5. 5.
    Utyashev F, Mulyukov R, Sukhorukov R, Valitov V, Mater Sci Forum 838839 (2016) 615.CrossRefGoogle Scholar
  6. 6.
    Motyka M, Sieniawski J, Ziaja Z, Mater Sci Eng A 599 (2014) 57.CrossRefGoogle Scholar
  7. 7.
    Somani M C, Sundaresan R, Kaibyshev O A, Ermatchenko A G, Mater Sci Eng A 243 (1998) 134.CrossRefGoogle Scholar
  8. 8.
    Kaibyshev O A, Superplasticity of Alloys, Intermetallics and Ceramics, 1st edn. Springer, Berlin (1992).CrossRefGoogle Scholar
  9. 9.
    Park C H, Ko Y G, Park J W, Lee C S, Mater Sci Eng A 496 (2008) 150.CrossRefGoogle Scholar
  10. 10.
    Salishchev GA, Galeyev RM, Valiakhmetov OR, Safiullin RV, Lutfullin RY, Senkovv ON, Froes FH, Kaibyshe OA, Mater Technol Adv Perform Mater 15 (2000) 133.Google Scholar
  11. 11.
    Margolin H, Cohen P, in Titanium 80—Science and Technology (1980), p 1555.Google Scholar
  12. 12.
    Margolin H, Cohen P, in Titanium 80—Science and Technology (1980), p 2991.Google Scholar
  13. 13.
    Weiss I, Froes F H, Eylon D, Welsch G E, Metall Mater Trans A 17 (1986) 1935.CrossRefGoogle Scholar
  14. 14.
    Park C H, Park K T, Shin D H, Lee C S, Mater Trans 49 (2008) 2196.CrossRefGoogle Scholar
  15. 15.
    Furuhara T, Maki T, Mater Sci Eng A 312 (2001) 145.CrossRefGoogle Scholar
  16. 16.
    Balasundar I, Raghu T, Kashyap B P, Mater Sci Eng A 600 (2014) 135.CrossRefGoogle Scholar
  17. 17.
    Salishchev G A, Mironov, Y S, Zherebtsov S V, Rev Adv Mater Sci 11 (2006) 152.Google Scholar
  18. 18.
    Lowden MAW, Hutchinson W B, Metall Mater Trans A 6A (1975) 441.CrossRefGoogle Scholar
  19. 19.
    Poths R M, Angella G, Waynne B P, Rainforth W M, Semiatin S L, Beynon J H, Metall Mater Trans A 35A (2004) 2993.CrossRefGoogle Scholar
  20. 20.
    Semiatin S L, Seetharaman V, Weiss I, Mater Sci Eng A 263 (1999) 257.CrossRefGoogle Scholar
  21. 21.
    Bieler T R, Semiatin S L, Acta Mater 49 (2001) 3565.CrossRefGoogle Scholar
  22. 22.
    Bieler T R, Semiatin S L, Int J Plast 18 (2002) 1165.CrossRefGoogle Scholar
  23. 23.
    Shell E B, Semaitin S L, Metall Mater Trans A 30 (1999) 3219.CrossRefGoogle Scholar
  24. 24.
    Banerjee D, Krishnan R V, Proc Indian Acad Sci 4 (1981) 21.Google Scholar
  25. 25.
    Zherebtsov S V, Salishchev A G, Galeyev R M, Valiakhmetov O R, Mironov Y S, Semiatin S L, Scr Mater 51 (2004) 1147.CrossRefGoogle Scholar
  26. 26.
    Material data sheet, M/s MIDHANI, Hyderabad, India.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Near Net Shape Group, Aeronautical Materials DivisionDefence Metallurgical Research LaboratoryKanchanbagh, HyderabadIndia

Personalised recommendations